IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11862.html
   My bibliography  Save this article

Bio-based polycarbonate as synthetic toolbox

Author

Listed:
  • O. Hauenstein

    (Macromolecular Chemistry II and Center for Colloids and Interfaces, University of Bayreuth)

  • S. Agarwal

    (Macromolecular Chemistry II and Center for Colloids and Interfaces, University of Bayreuth)

  • A. Greiner

    (Macromolecular Chemistry II and Center for Colloids and Interfaces, University of Bayreuth)

Abstract

Completely bio-based poly(limonene carbonate) is a thermoplastic polymer, which can be synthesized by copolymerization of limonene oxide (derived from limonene, which is found in orange peel) and CO2. Poly(limonene carbonate) has one double bond per repeating unit that can be exploited for further chemical modifications. These chemical modifications allow the tuning of the properties of the aliphatic polycarbonate in nearly any direction. Here we show synthetic routes to demonstrate that poly(limonene carbonate) is the perfect green platform polymer, from which many functional materials can be derived. The relevant examples presented in this study are the transformation from an engineering thermoplastic into a rubber, addition of permanent antibacterial activity, hydrophilization and even pH-dependent water solubility of the polycarbonate. Finally, we show a synthetic route to yield the completely saturated counterpart that exhibits improved heat processability due to lower reactivity.

Suggested Citation

  • O. Hauenstein & S. Agarwal & A. Greiner, 2016. "Bio-based polycarbonate as synthetic toolbox," Nature Communications, Nature, vol. 7(1), pages 1-7, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11862
    DOI: 10.1038/ncomms11862
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11862
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zvanaka S. Mazhandu & Edison Muzenda & Tirivaviri A. Mamvura & Mohamed Belaid & Trust Nhubu, 2020. "Integrated and Consolidated Review of Plastic Waste Management and Bio-Based Biodegradable Plastics: Challenges and Opportunities," Sustainability, MDPI, vol. 12(20), pages 1-57, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.