IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11801.html
   My bibliography  Save this article

Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration

Author

Listed:
  • Shougo Higashi

    (Stanford University
    Smart Design of Materials and Process Research-Domain, Toyota Central R&D Laboratories, Inc.)

  • Seok Woo Lee

    (Stanford University
    School of Electrical and Electronic Engineering, Nanyang Technological University)

  • Jang Soo Lee

    (Stanford University)

  • Kensuke Takechi

    (Smart Design of Materials and Process Research-Domain, Toyota Central R&D Laboratories, Inc.)

  • Yi Cui

    (Stanford University
    SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences)

Abstract

Portable power sources and grid-scale storage both require batteries combining high energy density and low cost. Zinc metal battery systems are attractive due to the low cost of zinc and its high charge-storage capacity. However, under repeated plating and stripping, zinc metal anodes undergo a well-known problem, zinc dendrite formation, causing internal shorting. Here we show a backside-plating configuration that enables long-term cycling of zinc metal batteries without shorting. We demonstrate 800 stable cycles of nickel–zinc batteries with good power rate (20 mA cm−2, 20 C rate for our anodes). Such a backside-plating method can be applied to not only zinc metal systems but also other metal-based electrodes suffering from internal short circuits.

Suggested Citation

  • Shougo Higashi & Seok Woo Lee & Jang Soo Lee & Kensuke Takechi & Yi Cui, 2016. "Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration," Nature Communications, Nature, vol. 7(1), pages 1-6, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11801
    DOI: 10.1038/ncomms11801
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11801
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenyao Zhang & Muyao Dong & Keren Jiang & Diling Yang & Xuehai Tan & Shengli Zhai & Renfei Feng & Ning Chen & Graham King & Hao Zhang & Hongbo Zeng & Hui Li & Markus Antonietti & Zhi Li, 2022. "Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Craig, Ben & Schoetz, Theresa & Cruden, Andrew & Ponce de Leon, Carlos, 2020. "Review of current progress in non-aqueous aluminium batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Yongbiao Mu & Zheng Li & Bu-ke Wu & Haodong Huang & Fuhai Wu & Youqi Chu & Lingfeng Zou & Ming Yang & Jiafeng He & Ling Ye & Meisheng Han & Tianshou Zhao & Lin Zeng, 2023. "3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.