IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11786.html
   My bibliography  Save this article

Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens

Author

Listed:
  • Richard T. Timms

    (Cambridge Institute for Medical Research, Cambridge Biomedical Campus)

  • Sam A. Menzies

    (Cambridge Institute for Medical Research, Cambridge Biomedical Campus)

  • Iva A. Tchasovnikarova

    (Cambridge Institute for Medical Research, Cambridge Biomedical Campus)

  • Lea C. Christensen

    (University of Copenhagen)

  • James C. Williamson

    (Cambridge Institute for Medical Research, Cambridge Biomedical Campus)

  • Robin Antrobus

    (Cambridge Institute for Medical Research, Cambridge Biomedical Campus)

  • Gordon Dougan

    (Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus)

  • Lars Ellgaard

    (University of Copenhagen)

  • Paul J. Lehner

    (Cambridge Institute for Medical Research, Cambridge Biomedical Campus)

Abstract

The application of forward genetic screens to cultured human cells represents a powerful method to study gene function. The repurposing of the bacterial CRISPR/Cas9 system provides an effective method to disrupt gene function in mammalian cells, and has been applied to genome-wide screens. Here, we compare the efficacy of genome-wide CRISPR/Cas9-mediated forward genetic screens versus gene-trap mutagenesis screens in haploid human cells, which represent the existing ‘gold standard’ method. This head-to-head comparison aimed to identify genes required for the endoplasmic reticulum-associated degradation (ERAD) of MHC class I molecules. The two approaches show high concordance (>70%), successfully identifying the majority of the known components of the canonical glycoprotein ERAD pathway. Both screens also identify a role for the uncharacterized gene TXNDC11, which we show encodes an EDEM2/3-associated disulphide reductase. Genome-wide CRISPR/Cas9-mediated screens together with haploid genetic screens provide a powerful addition to the forward genetic toolbox.

Suggested Citation

  • Richard T. Timms & Sam A. Menzies & Iva A. Tchasovnikarova & Lea C. Christensen & James C. Williamson & Robin Antrobus & Gordon Dougan & Lars Ellgaard & Paul J. Lehner, 2016. "Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens," Nature Communications, Nature, vol. 7(1), pages 1-10, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11786
    DOI: 10.1038/ncomms11786
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11786
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11786?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna S. Dickson & Tekle Pauzaite & Esther Arnaiz & Brian M. Ortmann & James A. West & Norbert Volkmar & Anthony W. Martinelli & Zhaoqi Li & Niek Wit & Dennis Vitkup & Arthur Kaser & Paul J. Lehner & J, 2023. "A HIF independent oxygen-sensitive pathway for controlling cholesterol synthesis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Morgane Boone & Pathmanaban Ramasamy & Jasper Zuallaert & Robbin Bouwmeester & Berre Moer & Davy Maddelein & Demet Turan & Niels Hulstaert & Hannah Eeckhaut & Elien Vandermarliere & Lennart Martens & , 2021. "Massively parallel interrogation of protein fragment secretability using SECRiFY reveals features influencing secretory system transit," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    3. Ian D. Ferguson & Bonell Patiño-Escobar & Sami T. Tuomivaara & Yu-Hsiu T. Lin & Matthew A. Nix & Kevin K. Leung & Corynn Kasap & Emilio Ramos & Wilson Nieves Vasquez & Alexis Talbot & Martina Hale & A, 2022. "The surfaceome of multiple myeloma cells suggests potential immunotherapeutic strategies and protein markers of drug resistance," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.