IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11718.html
   My bibliography  Save this article

Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation

Author

Listed:
  • Gerald A. Meehl

    (National Center for Atmospheric Research)

  • Aixue Hu

    (National Center for Atmospheric Research)

  • Haiyan Teng

    (National Center for Atmospheric Research)

Abstract

The negative phase of the Interdecadal Pacific Oscillation (IPO), a dominant mode of multi-decadal variability of sea surface temperatures (SSTs) in the Pacific, contributed to the reduced rate of global surface temperature warming in the early 2000s. A proposed mechanism for IPO multidecadal variability indicates that the presence of decadal timescale upper ocean heat content in the off-equatorial western tropical Pacific can provide conditions for an interannual El Niño/Southern Oscillation event to trigger a transition of tropical Pacific SSTs to the opposite IPO phase. Here we show that a decadal prediction initialized in 2013 simulates predicted Niño3.4 SSTs that have qualitatively tracked the observations through 2015. The year three to seven average prediction (2015–2019) from the 2013 initial state shows a transition to the positive phase of the IPO from the previous negative phase and a resumption of larger rates of global warming over the 2013–2022 period consistent with a positive IPO phase.

Suggested Citation

  • Gerald A. Meehl & Aixue Hu & Haiyan Teng, 2016. "Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation," Nature Communications, Nature, vol. 7(1), pages 1-7, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11718
    DOI: 10.1038/ncomms11718
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11718
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11718?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johann D. Bell & Inna Senina & Timothy Adams & Olivier Aumont & Beatriz Calmettes & Sangaalofa Clark & Morgane Dessert & Marion Gehlen & Thomas Gorgues & John Hampton & Quentin Hanich & Harriet Harden, 2021. "Pathways to sustaining tuna-dependent Pacific Island economies during climate change," Nature Sustainability, Nature, vol. 4(10), pages 900-910, October.
    2. Maurice F. Huguenin & Ryan M. Holmes & Matthew H. England, 2022. "Drivers and distribution of global ocean heat uptake over the last half century," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Zhi Li & Matthew H. England & Sjoerd Groeskamp, 2023. "Recent acceleration in global ocean heat accumulation by mode and intermediate waters," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.