IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11701.html
   My bibliography  Save this article

Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane

Author

Listed:
  • W. He

    (Nano Science and Technology Program, Hong Kong University of Science and Technology)

  • H. Song

    (Hong Kong University of Science and Technology)

  • Y. Su

    (Hong Kong University of Science and Technology)

  • L. Geng

    (Hong Kong University of Science and Technology)

  • B. J. Ackerson

    (Oklahoma State University)

  • H. B. Peng

    (Hong Kong University of Science and Technology)

  • P. Tong

    (Hong Kong University of Science and Technology)

Abstract

The Brownian motion of molecules at thermal equilibrium usually has a finite correlation time and will eventually be randomized after a long delay time, so that their displacement follows the Gaussian statistics. This is true even when the molecules have experienced a complex environment with a finite correlation time. Here, we report that the lateral motion of the acetylcholine receptors on live muscle cell membranes does not follow the Gaussian statistics for normal Brownian diffusion. From a careful analysis of a large volume of the protein trajectories obtained over a wide range of sampling rates and long durations, we find that the normalized histogram of the protein displacements shows an exponential tail, which is robust and universal for cells under different conditions. The experiment indicates that the observed non-Gaussian statistics and dynamic heterogeneity are inherently linked to the slow-active remodelling of the underlying cortical actin network.

Suggested Citation

  • W. He & H. Song & Y. Su & L. Geng & B. J. Ackerson & H. B. Peng & P. Tong, 2016. "Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane," Nature Communications, Nature, vol. 7(1), pages 1-8, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11701
    DOI: 10.1038/ncomms11701
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11701
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11701?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Čukić, Milena & Galovic, Slobodanka, 2023. "Mathematical modeling of anomalous diffusive behavior in transdermal drug-delivery including time-delayed flux concept," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Wang, Xudong & Chen, Yao, 2021. "Ergodic property of Langevin systems with superstatistical, uncorrelated or correlated diffusivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    3. Ahamad, Nabi & Debnath, Pallavi, 2020. "Rouse model in crowded environment modeled by “diffusing diffusivity”," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    4. Du, Qiang & Toniazzi, Lorenzo & Zhou, Zhi, 2020. "Stochastic representation of solution to nonlocal-in-time diffusion," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 2058-2085.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.