IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11660.html
   My bibliography  Save this article

Relative rate and location of intra-host HIV evolution to evade cellular immunity are predictable

Author

Listed:
  • John P. Barton

    (Ragon Institute of MGH, MIT and Harvard
    Massachusetts Institute of Technology
    Massachusetts Institute of Technology
    Institute for Medical Engineering and Science, Massachusetts Institute of Technology)

  • Nilu Goonetilleke

    (Immunology and Medicine, University of North Carolina
    University of Oxford)

  • Thomas C. Butler

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Bruce D. Walker

    (Ragon Institute of MGH, MIT and Harvard
    Howard Hughes Medical Institute)

  • Andrew J. McMichael

    (University of Oxford)

  • Arup K. Chakraborty

    (Ragon Institute of MGH, MIT and Harvard
    Massachusetts Institute of Technology
    Massachusetts Institute of Technology
    Institute for Medical Engineering and Science, Massachusetts Institute of Technology)

Abstract

Human immunodeficiency virus (HIV) evolves within infected persons to escape being destroyed by the host immune system, thereby preventing effective immune control of infection. Here, we combine methods from evolutionary dynamics and statistical physics to simulate in vivo HIV sequence evolution, predicting the relative rate of escape and the location of escape mutations in response to T-cell-mediated immune pressure in a cohort of 17 persons with acute HIV infection. Predicted and clinically observed times to escape immune responses agree well, and we show that the mutational pathways to escape depend on the viral sequence background due to epistatic interactions. The ability to predict escape pathways and the duration over which control is maintained by specific immune responses open the door to rational design of immunotherapeutic strategies that might enable long-term control of HIV infection. Our approach enables intra-host evolution of a human pathogen to be predicted in a probabilistic framework.

Suggested Citation

  • John P. Barton & Nilu Goonetilleke & Thomas C. Butler & Bruce D. Walker & Andrew J. McMichael & Arup K. Chakraborty, 2016. "Relative rate and location of intra-host HIV evolution to evade cellular immunity are predictable," Nature Communications, Nature, vol. 7(1), pages 1-10, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11660
    DOI: 10.1038/ncomms11660
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11660
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Abdul Quadeer & David Morales-Jimenez & Matthew R McKay, 2018. "Co-evolution networks of HIV/HCV are modular with direct association to structure and function," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-29, September.
    2. Hang Zhang & Ahmed Abdul Quadeer & Matthew R. McKay, 2023. "Direct-acting antiviral resistance of Hepatitis C virus is promoted by epistasis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.