IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11609.html
   My bibliography  Save this article

Age differences in learning emerge from an insufficient representation of uncertainty in older adults

Author

Listed:
  • Matthew R. Nassar

    (Linguistic, and Psychological Sciences, Brown University)

  • Rasmus Bruckner

    (International Max Planck Research School LIFE, Max Planck Institute for Human Development
    Freie Universität Berlin)

  • Joshua I. Gold

    (University of Pennsylvania)

  • Shu-Chen Li

    (TU Dresden)

  • Hauke R. Heekeren

    (Freie Universität Berlin)

  • Ben Eppinger

    (TU Dresden)

Abstract

Healthy aging can lead to impairments in learning that affect many laboratory and real-life tasks. These tasks often involve the acquisition of dynamic contingencies, which requires adjusting the rate of learning to environmental statistics. For example, learning rate should increase when expectations are uncertain (uncertainty), outcomes are surprising (surprise) or contingencies are more likely to change (hazard rate). In this study, we combine computational modelling with an age-comparative behavioural study to test whether age-related learning deficits emerge from a failure to optimize learning according to the three factors mentioned above. Our results suggest that learning deficits observed in healthy older adults are driven by a diminished capacity to represent and use uncertainty to guide learning. These findings provide insight into age-related cognitive changes and demonstrate how learning deficits can emerge from a failure to accurately assess how much should be learned.

Suggested Citation

  • Matthew R. Nassar & Rasmus Bruckner & Joshua I. Gold & Shu-Chen Li & Hauke R. Heekeren & Ben Eppinger, 2016. "Age differences in learning emerge from an insufficient representation of uncertainty in older adults," Nature Communications, Nature, vol. 7(1), pages 1-13, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11609
    DOI: 10.1038/ncomms11609
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11609
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11609?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Payam Piray & Nathaniel D. Daw, 2021. "A model for learning based on the joint estimation of stochasticity and volatility," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    2. Marieke Jepma & Jessica V Schaaf & Ingmar Visser & Hilde M Huizenga, 2020. "Uncertainty-driven regulation of learning and exploration in adolescents: A computational account," PLOS Computational Biology, Public Library of Science, vol. 16(9), pages 1-29, September.
    3. Payam Piray & Nathaniel D. Daw, 2024. "Computational processes of simultaneous learning of stochasticity and volatility in humans," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Vincent Moens & Alexandre Zénon, 2019. "Learning and forgetting using reinforced Bayesian change detection," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-41, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.