IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11336.html
   My bibliography  Save this article

Structure of eukaryotic purine/H+ symporter UapA suggests a role for homodimerization in transport activity

Author

Listed:
  • Yilmaz Alguel

    (Imperial College London)

  • Sotiris Amillis

    (Faculty of Biology, University of Athens)

  • James Leung

    (Imperial College London)

  • George Lambrinidis

    (Faculty of Pharmacy, University of Athens)

  • Stefano Capaldi

    (Imperial College London
    University of Verona)

  • Nicola J. Scull

    (Imperial College London)

  • Gregory Craven

    (Imperial College London)

  • So Iwata

    (Imperial College London
    JST, Research Acceleration Program, Membrane Protein Crystallography Project)

  • Alan Armstrong

    (Imperial College London)

  • Emmanuel Mikros

    (Faculty of Pharmacy, University of Athens)

  • George Diallinas

    (Faculty of Biology, University of Athens)

  • Alexander D. Cameron

    (School of Life Sciences, University of Warwick)

  • Bernadette Byrne

    (Imperial College London)

Abstract

The uric acid/xanthine H+ symporter, UapA, is a high-affinity purine transporter from the filamentous fungus Aspergillus nidulans. Here we present the crystal structure of a genetically stabilized version of UapA (UapA-G411VΔ1–11) in complex with xanthine. UapA is formed from two domains, a core domain and a gate domain, similar to the previously solved uracil transporter UraA, which belongs to the same family. The structure shows UapA in an inward-facing conformation with xanthine bound to residues in the core domain. Unlike UraA, which was observed to be a monomer, UapA forms a dimer in the crystals with dimer interactions formed exclusively through the gate domain. Analysis of dominant negative mutants is consistent with dimerization playing a key role in transport. We postulate that UapA uses an elevator transport mechanism likely to be shared with other structurally homologous transporters including anion exchangers and prestin.

Suggested Citation

  • Yilmaz Alguel & Sotiris Amillis & James Leung & George Lambrinidis & Stefano Capaldi & Nicola J. Scull & Gregory Craven & So Iwata & Alan Armstrong & Emmanuel Mikros & George Diallinas & Alexander D. , 2016. "Structure of eukaryotic purine/H+ symporter UapA suggests a role for homodimerization in transport activity," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11336
    DOI: 10.1038/ncomms11336
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11336
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11336?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingxing Wang & Jin He & Shanshan Li & Qianwen Cai & Kaiming Zhang & Ji She, 2023. "Structural basis of vitamin C recognition and transport by mammalian SVCT1 transporter," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Takaaki A. Kobayashi & Hiroto Shimada & Fumiya K. Sano & Yuzuru Itoh & Sawako Enoki & Yasushi Okada & Tsukasa Kusakizako & Osamu Nureki, 2024. "Dimeric transport mechanism of human vitamin C transporter SVCT1," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Benedikt T. Kuhn & Jonathan Zöller & Iwan Zimmermann & Tim Gemeinhardt & Dogukan H. Özkul & Julian D. Langer & Markus A. Seeger & Eric R. Geertsma, 2024. "Interdomain-linkers control conformational transitions in the SLC23 elevator transporter UraA," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Lie Wang & Anthony Hoang & Eva Gil-Iturbe & Arthur Laganowsky & Matthias Quick & Ming Zhou, 2024. "Mechanism of anion exchange and small-molecule inhibition of pendrin," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.