IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11274.html
   My bibliography  Save this article

Inhibitory interactions promote frequent bistability among competing bacteria

Author

Listed:
  • Erik S. Wright

    (Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, Wisconsin 53715, USA)

  • Kalin H. Vetsigian

    (Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, Wisconsin 53715, USA)

Abstract

It is largely unknown how the process of microbial community assembly is affected by the order of species arrival, initial species abundances and interactions between species. A minimal way of capturing competitive abilities in a frequency-dependent manner is with an invasibility network specifying whether a species at low abundance can increase in frequency in an environment dominated by another species. Here, using a panel of prolific small-molecule producers and a habitat with feast-and-famine cycles, we show that the most abundant strain can often exclude other strains—resulting in bistability between pairs of strains. Instead of a single winner, the empirically determined invasibility network is ruled by multiple strains that cannot invade each other, and does not contain loops of cyclic dominance. Antibiotic inhibition contributes to bistability by helping producers resist invasions while at high abundance and by reducing producers’ ability to invade when at low abundance.

Suggested Citation

  • Erik S. Wright & Kalin H. Vetsigian, 2016. "Inhibitory interactions promote frequent bistability among competing bacteria," Nature Communications, Nature, vol. 7(1), pages 1-7, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11274
    DOI: 10.1038/ncomms11274
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11274
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Y. Alekseeva & Anneloes E. Groenenboom & Eddy J. Smid & Sijmen E. Schoustra, 2021. "Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods," IJERPH, MDPI, vol. 18(19), pages 1-19, September.
    2. Gina Paola Rodriguez-Castaño & Federico E Rey & Alejandro Caro-Quintero & Alejandro Acosta-González, 2020. "Gut-derived Flavonifractor species variants are differentially enriched during in vitro incubation with quercetin," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-21, December.
    3. William Lopes & Daniel R. Amor & Jeff Gore, 2024. "Cooperative growth in microbial communities is a driver of multistability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.