IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11175.html
   My bibliography  Save this article

Entropy-driven formation of chiral nematic phases by computer simulations

Author

Listed:
  • Simone Dussi

    (Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University)

  • Marjolein Dijkstra

    (Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University)

Abstract

Predicting the macroscopic chiral behaviour of liquid crystals from the microscopic chirality of the particles is highly non-trivial, even when the chiral interactions are purely entropic in nature. Here we introduce a novel chiral hard-particle model, namely particles with a twisted polyhedral shape and obtain a stable fully entropy-driven cholesteric phase by computer simulations. By slightly modifying the triangular base of the particle, we are able to switch from a left-handed prolate (calamitic) to a right-handed oblate (discotic) cholesteric phase using the same right-handed twisted particle model. Furthermore, we show that not only prolate and oblate chiral nematic phases, but also other novel entropy-driven phases, namely chiral blue phases, chiral nematic phases featuring both twist and splay deformations, chiral biaxial nematic phases with one of the axes twisted, can be obtained by varying particle biaxiality and chirality. Our results allow to identify general guidelines for the stabilization of these phases.

Suggested Citation

  • Simone Dussi & Marjolein Dijkstra, 2016. "Entropy-driven formation of chiral nematic phases by computer simulations," Nature Communications, Nature, vol. 7(1), pages 1-10, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11175
    DOI: 10.1038/ncomms11175
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11175
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin-Sheng Wu & Marina Torres Lázaro & Haridas Mundoor & Henricus H. Wensink & Ivan I. Smalyukh, 2024. "Emergent biaxiality in chiral hybrid liquid crystals," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Thomas G. Parton & Richard M. Parker & Gea T. Kerkhof & Aurimas Narkevicius & Johannes S. Haataja & Bruno Frka-Petesic & Silvia Vignolini, 2022. "Chiral self-assembly of cellulose nanocrystals is driven by crystallite bundles," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.