IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11131.html
   My bibliography  Save this article

Topological vacuum bubbles by anyon braiding

Author

Listed:
  • Cheolhee Han

    (Korea Advanced Institute of Science and Technology)

  • Jinhong Park

    (Korea Advanced Institute of Science and Technology)

  • Yuval Gefen

    (Weizmann Institute of Science)

  • H.-S. Sim

    (Korea Advanced Institute of Science and Technology)

Abstract

According to a basic rule of fermionic and bosonic many-body physics, known as the linked cluster theorem, physical observables are not affected by vacuum bubbles, which represent virtual particles created from vacuum and self-annihilating without interacting with real particles. Here we show that this conventional knowledge must be revised for anyons, quasiparticles that obey fractional exchange statistics intermediate between fermions and bosons. We find that a certain class of vacuum bubbles of Abelian anyons does affect physical observables. They represent virtually excited anyons that wind around real anyonic excitations. These topological bubbles result in a temperature-dependent phase shift of Fabry–Perot interference patterns in the fractional quantum Hall regime accessible in current experiments, thus providing a tool for direct and unambiguous observation of elusive fractional statistics.

Suggested Citation

  • Cheolhee Han & Jinhong Park & Yuval Gefen & H.-S. Sim, 2016. "Topological vacuum bubbles by anyon braiding," Nature Communications, Nature, vol. 7(1), pages 1-6, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11131
    DOI: 10.1038/ncomms11131
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11131
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasiuta, Yanina & Rovenchak, Andrij, 2018. "Modeling free anyons at the bosonic and fermionic ends," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 918-927.
    2. P. Glidic & I. Petkovic & C. Piquard & A. Aassime & A. Cavanna & Y. Jin & U. Gennser & C. Mora & D. Kovrizhin & A. Anthore & F. Pierre, 2024. "Signature of anyonic statistics in the integer quantum Hall regime," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Hwanchul Jung & Dongsung T. Park & Seokyeong Lee & Uhjin Kim & Chanuk Yang & Jehyun Kim & V. Umansky & Dohun Kim & H.-S. Sim & Yunchul Chung & Hyoungsoon Choi & Hyung Kook Choi, 2023. "Observation of electronic modes in open cavity resonator," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. June-Young M. Lee & H.-S. Sim, 2022. "Non-Abelian anyon collider," Nature Communications, Nature, vol. 13(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.