IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10934.html
   My bibliography  Save this article

Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system

Author

Listed:
  • Taek-Chin Cheong

    (Children’s Hospital Boston and Harvard Medical School)

  • Mara Compagno

    (Children’s Hospital Boston and Harvard Medical School)

  • Roberto Chiarle

    (Children’s Hospital Boston and Harvard Medical School
    University of Torino)

Abstract

Applications of the CRISPR-Cas9 system to edit the genome have widely expanded to include DNA gene knock-out, deletions, chromosomal rearrangements, RNA editing and genome-wide screenings. Here we show the application of CRISPR-Cas9 technology to edit the mouse and human immunoglobulin (Ig) genes. By delivering Cas9 and guide-RNA (gRNA) with retro- or lenti-virus to IgM+ mouse B cells and hybridomas, we induce class-switch recombination (CSR) of the IgH chain to the desired subclass. Similarly, we induce CSR in all human B cell lines tested with high efficiency to targeted IgH subclass. Finally, we engineer mouse hybridomas to secrete Fab′ fragments instead of the whole Ig. Our results indicate that Ig genes in mouse and human cells can be edited to obtain any desired IgH switching helpful to study the biology of normal and lymphoma B cells. We also propose applications that could transform the technology of antibody production.

Suggested Citation

  • Taek-Chin Cheong & Mara Compagno & Roberto Chiarle, 2016. "Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system," Nature Communications, Nature, vol. 7(1), pages 1-10, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10934
    DOI: 10.1038/ncomms10934
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10934
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10934?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taek-Chin Cheong & Ahram Jang & Qi Wang & Giulia C. Leonardi & Biagio Ricciuti & Joao V. Alessi & Alessandro Di Federico & Mark M. Awad & Maria K. Lehtinen & Marian H. Harris & Roberto Chiarle, 2024. "Mechanistic patterns and clinical implications of oncogenic tyrosine kinase fusions in human cancers," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.