IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10901.html
   My bibliography  Save this article

Putting pressure on aromaticity along with in situ experimental electron density of a molecular crystal

Author

Listed:
  • Nicola Casati

    (Paul Scherrer Institute)

  • Annette Kleppe

    (Diamond light source Ltd., Harwell Science and innovation Campus)

  • Andrew P. Jephcoat

    (Institute for Study of the Earth’s interior, Okayama University)

  • Piero Macchi

    (University of Bern)

Abstract

When pressure is applied, the molecules inside a crystal undergo significant changes of their stereoelectronic properties. The most interesting are those enhancing the reactivity of systems that would be otherwise rather inert at ambient conditions. Before a reaction can occur, however, a molecule must be activated, which means destabilized. In aromatic compounds, molecular stability originates from the resonance between two electronic configurations. Here we show how the resonance energy can be decreased in molecular crystals on application of pressure. The focus is on syn-1,6:8,13-Biscarbonyl[14]annulene, an aromatic compound at ambient conditions that gradually localizes one of the resonant configurations on compression. This phenomenon is evident from the molecular geometries measured at several pressures and from the experimentally determined electron density distribution at 7.7 GPa; the observations presented in this work are validated by periodic DFT calculations.

Suggested Citation

  • Nicola Casati & Annette Kleppe & Andrew P. Jephcoat & Piero Macchi, 2016. "Putting pressure on aromaticity along with in situ experimental electron density of a molecular crystal," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10901
    DOI: 10.1038/ncomms10901
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10901
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10901?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacob J. Shephard & Victoria E. J. Berryman & Tatsumi Ochiai & Olaf Walter & Amy N. Price & Mark R. Warren & Polly L. Arnold & Nikolas Kaltsoyannis & Simon Parsons, 2022. "Covalent bond shortening and distortion induced by pressurization of thorium, uranium, and neptunium tetrakis aryloxides," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.