IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10881.html
   My bibliography  Save this article

TRF2-RAP1 is required to protect telomeres from engaging in homologous recombination-mediated deletions and fusions

Author

Listed:
  • Rekha Rai

    (Yale University School of Medicine)

  • Yong Chen

    (National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences)

  • Ming Lei

    (National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences)

  • Sandy Chang

    (Yale University School of Medicine
    Yale University School of Medicine
    Yale University School of Medicine)

Abstract

Repressor/activator protein 1 (RAP1) is a highly conserved telomere-interacting protein. Yeast Rap1 protects telomeres from non-homologous end joining (NHEJ), plays important roles in telomere length control and is involved in transcriptional gene regulation. However, a role for mammalian RAP1 in telomere end protection remains controversial. Here we present evidence that mammalian RAP1 is essential to protect telomere from homology directed repair (HDR) of telomeres. RAP1 cooperates with the basic domain of TRF2 (TRF2B) to repress PARP1 and SLX4 localization to telomeres. Without RAP1 and TRF2B, PARP1 and SLX4 HR factors promote rapid telomere resection, resulting in catastrophic telomere loss and the generation of telomere-free chromosome fusions in both mouse and human cells. The RAP1 Myb domain is required to repress both telomere loss and formation of telomere-free fusions. Our results highlight the importance of the RAP1-TRF2 heterodimer in protecting telomeres from inappropriate processing by the HDR pathway.

Suggested Citation

  • Rekha Rai & Yong Chen & Ming Lei & Sandy Chang, 2016. "TRF2-RAP1 is required to protect telomeres from engaging in homologous recombination-mediated deletions and fusions," Nature Communications, Nature, vol. 7(1), pages 1-13, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10881
    DOI: 10.1038/ncomms10881
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10881
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10881?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanna Braun & Ziyan Xu & Fiona Chang & Nikenza Viceconte & Grishma Rane & Michal Levin & Liudmyla Lototska & Franziska Roth & Alexia Hillairet & Albert Fradera-Sola & Vartika Khanchandani & Zi Wayne S, 2023. "ZNF524 directly interacts with telomeric DNA and supports telomere integrity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.