IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10848.html
   My bibliography  Save this article

Subnanometre enzyme mechanics probed by single-molecule force spectroscopy

Author

Listed:
  • Benjamin Pelz

    (Technische Universität München)

  • Gabriel Žoldák

    (Technische Universität München)

  • Fabian Zeller

    (Technische Universität München)

  • Martin Zacharias

    (Technische Universität München)

  • Matthias Rief

    (Technische Universität München
    Munich Center for Integrated Protein Science)

Abstract

Enzymes are molecular machines that bind substrates specifically, provide an adequate chemical environment for catalysis and exchange products rapidly, to ensure fast turnover rates. Direct information about the energetics that drive conformational changes is difficult to obtain. We used subnanometre single-molecule force spectroscopy to study the energetic drive of substrate-dependent lid closing in the enzyme adenylate kinase. Here we show that in the presence of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A), closing and opening of both lids is cooperative and tightly coupled to inhibitor binding. Surprisingly, binding of the substrates ADP and ATP exhibits a much smaller energetic drive towards the fully closed state. Instead, we observe a new dominant energetic minimum with both lids half closed. Our results, combining experiment and molecular dynamics simulations, give detailed mechanical insights into how an enzyme can cope with the seemingly contradictory requirements of rapid substrate exchange and tight closing, to ensure efficient catalysis.

Suggested Citation

  • Benjamin Pelz & Gabriel Žoldák & Fabian Zeller & Martin Zacharias & Matthias Rief, 2016. "Subnanometre enzyme mechanics probed by single-molecule force spectroscopy," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10848
    DOI: 10.1038/ncomms10848
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10848
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicole Stéphanie Galenkamp & Sarah Zernia & Yulan B. Oppen & Marco Noort & Andreas Milias Argeitis & Giovanni Maglia, 2024. "Allostery can convert binding free energies into concerted domain motions in enzymes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.