Author
Listed:
- Chul-Jin Lee
(Duke University Medical Center)
- Xiaofei Liang
(Duke University)
- Qinglin Wu
(Duke University Medical Center)
- Javaria Najeeb
(Duke University Medical Center)
- Jinshi Zhao
(Duke University Medical Center)
- Ramesh Gopalaswamy
(Duke University)
- Marie Titecat
(Inserm, Univ. Lille, CHU Lille, Institut Pasteur de Lille, CNRS, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille)
- Florent Sebbane
(Inserm, Univ. Lille, CHU Lille, Institut Pasteur de Lille, CNRS, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille)
- Nadine Lemaitre
(Inserm, Univ. Lille, CHU Lille, Institut Pasteur de Lille, CNRS, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille)
- Eric J. Toone
(Duke University Medical Center
Duke University)
- Pei Zhou
(Duke University Medical Center
Duke University)
Abstract
Conformational dynamics plays an important role in enzyme catalysis, allosteric regulation of protein functions and assembly of macromolecular complexes. Despite these well-established roles, such information has yet to be exploited for drug design. Here we show by nuclear magnetic resonance spectroscopy that inhibitors of LpxC—an essential enzyme of the lipid A biosynthetic pathway in Gram-negative bacteria and a validated novel antibiotic target—access alternative, minor population states in solution in addition to the ligand conformation observed in crystal structures. These conformations collectively delineate an inhibitor envelope that is invisible to crystallography, but is dynamically accessible by small molecules in solution. Drug design exploiting such a hidden inhibitor envelope has led to the development of potent antibiotics with inhibition constants in the single-digit picomolar range. The principle of the cryptic inhibitor envelope approach may be broadly applicable to other lead optimization campaigns to yield improved therapeutics.
Suggested Citation
Chul-Jin Lee & Xiaofei Liang & Qinglin Wu & Javaria Najeeb & Jinshi Zhao & Ramesh Gopalaswamy & Marie Titecat & Florent Sebbane & Nadine Lemaitre & Eric J. Toone & Pei Zhou, 2016.
"Drug design from the cryptic inhibitor envelope,"
Nature Communications, Nature, vol. 7(1), pages 1-7, April.
Handle:
RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10638
DOI: 10.1038/ncomms10638
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10638. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.