IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10616.html
   My bibliography  Save this article

Supercurrent in van der Waals Josephson junction

Author

Listed:
  • Naoto Yabuki

    (Institute of Industrial Science, University of Tokyo)

  • Rai Moriya

    (Institute of Industrial Science, University of Tokyo)

  • Miho Arai

    (Institute of Industrial Science, University of Tokyo)

  • Yohta Sata

    (Institute of Industrial Science, University of Tokyo)

  • Sei Morikawa

    (Institute of Industrial Science, University of Tokyo)

  • Satoru Masubuchi

    (Institute of Industrial Science, University of Tokyo)

  • Tomoki Machida

    (Institute of Industrial Science, University of Tokyo
    Institute for Nano Quantum Information Electronics, University of Tokyo)

Abstract

Supercurrent flow between two superconductors with different order parameters, a phenomenon known as the Josephson effect, can be achieved by inserting a non-superconducting material between two superconductors to decouple their wavefunctions. These Josephson junctions have been employed in fields ranging from digital to quantum electronics, yet their functionality is limited by the interface quality and use of non-superconducting material. Here we show that by exfoliating a layered dichalcogenide (NbSe2) superconductor, the van der Waals (vdW) contact between the cleaved surfaces can instead be used to construct a Josephson junction. This is made possible by recent advances in vdW heterostructure technology, with an atomically flat vdW interface free of oxidation and inter-diffusion achieved by eliminating all heat treatment during junction preparation. Here we demonstrate that this artificially created vdW interface provides sufficient decoupling of the wavefunctions of the two NbSe2 crystals, with the vdW Josephson junction exhibiting a high supercurrent transparency.

Suggested Citation

  • Naoto Yabuki & Rai Moriya & Miho Arai & Yohta Sata & Sei Morikawa & Satoru Masubuchi & Tomoki Machida, 2016. "Supercurrent in van der Waals Josephson junction," Nature Communications, Nature, vol. 7(1), pages 1-5, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10616
    DOI: 10.1038/ncomms10616
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10616
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linfeng Ai & Enze Zhang & Jinshan Yang & Xiaoyi Xie & Yunkun Yang & Zehao Jia & Yuda Zhang & Shanshan Liu & Zihan Li & Pengliang Leng & Xiangyu Cao & Xingdan Sun & Tongyao Zhang & Xufeng Kou & Zheng H, 2021. "Van der Waals ferromagnetic Josephson junctions," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Gang Qiu & Hung-Yu Yang & Lunhui Hu & Huairuo Zhang & Chih-Yen Chen & Yanfeng Lyu & Christopher Eckberg & Peng Deng & Sergiy Krylyuk & Albert V. Davydov & Ruixing Zhang & Kang L. Wang, 2023. "Emergent ferromagnetism with superconductivity in Fe(Te,Se) van der Waals Josephson junctions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Guowen Yuan & Weilin Liu & Xianlei Huang & Zihao Wan & Chao Wang & Bing Yao & Wenjie Sun & Hang Zheng & Kehan Yang & Zhenjia Zhou & Yuefeng Nie & Jie Xu & Libo Gao, 2023. "Stacking transfer of wafer-scale graphene-based van der Waals superlattices," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.