IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10613.html
   My bibliography  Save this article

Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems

Author

Listed:
  • David Burstein

    (University of California, Berkeley)

  • Christine L. Sun

    (University of California, Berkeley
    Stanford University School of Medicine)

  • Christopher T. Brown

    (University of California, Berkeley)

  • Itai Sharon

    (University of California, Berkeley)

  • Karthik Anantharaman

    (University of California, Berkeley)

  • Alexander J. Probst

    (University of California, Berkeley)

  • Brian C. Thomas

    (University of California, Berkeley)

  • Jillian F. Banfield

    (University of California, Berkeley
    Policy and Management, University of California)

Abstract

Current understanding of microorganism–virus interactions, which shape the evolution and functioning of Earth’s ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation-independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. We correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides.

Suggested Citation

  • David Burstein & Christine L. Sun & Christopher T. Brown & Itai Sharon & Karthik Anantharaman & Alexander J. Probst & Brian C. Thomas & Jillian F. Banfield, 2016. "Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10613
    DOI: 10.1038/ncomms10613
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10613
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10613?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shicong Du & Xinzhao Tong & Alvin C. K. Lai & Chak K. Chan & Christopher E. Mason & Patrick K. H. Lee, 2023. "Highly host-linked viromes in the built environment possess habitat-dependent diversity and functions for potential virus-host coevolution," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Patrick A. Jonge & Koen Wortelboer & Torsten P. M. Scheithauer & Bert-Jan H. Born & Aeilko H. Zwinderman & Franklin L. Nobrega & Bas E. Dutilh & Max Nieuwdorp & Hilde Herrema, 2022. "Gut virome profiling identifies a widespread bacteriophage family associated with metabolic syndrome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Zongzhi Wu & Tang Liu & Qian Chen & Tianyi Chen & Jinyun Hu & Liyu Sun & Bingxue Wang & Wenpeng Li & Jinren Ni, 2024. "Unveiling the unknown viral world in groundwater," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Alexa M. Nicolas & Ella T. Sieradzki & Jennifer Pett-Ridge & Jillian F. Banfield & Michiko E. Taga & Mary K. Firestone & Steven J. Blazewicz, 2023. "A subset of viruses thrives following microbial resuscitation during rewetting of a seasonally dry California grassland soil," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.