Author
Listed:
- Chenyu Li
(Faculty of Science, National University of Singapore
Present address: Harvard Medical School, Center for Life Science 0428, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA)
- Chenyi Xue
(Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania)
- Qiaoyun Yang
(Faculty of Science, National University of Singapore)
- Boon Chuan Low
(Faculty of Science, National University of Singapore
Mechanobiology Institute, National University of Singapore)
- Yih-Cherng Liou
(Faculty of Science, National University of Singapore
Graduate School for Integrative Sciences and Engineering, National University of Singapore)
Abstract
In vertebrate cells, chromosomes oscillate to align precisely during metaphase. NuSAP, a microtubule-associated protein, plays a critical role in stabilizing spindle microtubules. In this study, we utilize 3D time-lapse live-cell imaging to monitor the role of NuSAP in chromosome oscillation and identify NuSAP as a novel regulator of the chromokinesin, Kid. Depletion of NuSAP significantly suppresses the amplitude and velocity of chromosome oscillation. We analyse the effects of NuSAP and Kid depletion in monopolar and bipolar cells with or without kinetochore microtubule depletion. Twelve postulated conditions are deciphered to reveal the contribution of NuSAP to the polar force generated at kinetochore microtubules and to the regulation of the polar ejection force generated by Kid, thus revealing a pivotal role of NuSAP in chromosome oscillation.
Suggested Citation
Chenyu Li & Chenyi Xue & Qiaoyun Yang & Boon Chuan Low & Yih-Cherng Liou, 2016.
"NuSAP governs chromosome oscillation by facilitating the Kid-generated polar ejection force,"
Nature Communications, Nature, vol. 7(1), pages 1-14, April.
Handle:
RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10597
DOI: 10.1038/ncomms10597
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10597. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.