IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10548.html
   My bibliography  Save this article

RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency

Author

Listed:
  • Jun Song

    (Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center)

  • Dongshan Yang

    (Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center)

  • Jie Xu

    (Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center)

  • Tianqing Zhu

    (Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center)

  • Y. Eugene Chen

    (Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center)

  • Jifeng Zhang

    (Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center)

Abstract

Zinc-finger nuclease, transcription activator-like effector nuclease and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) are becoming major tools for genome editing. Importantly, knock-in in several non-rodent species has been finally achieved thanks to these customizable nucleases; yet the rates remain to be further improved. We hypothesize that inhibiting non-homologous end joining (NHEJ) or enhancing homology-directed repair (HDR) will improve the nuclease-mediated knock-in efficiency. Here we show that the in vitro application of an HDR enhancer, RS-1, increases the knock-in efficiency by two- to five-fold at different loci, whereas NHEJ inhibitor SCR7 has minimal effects. We then apply RS-1 for animal production and have achieved multifold improvement on the knock-in rates as well. Our work presents tools to nuclease-mediated knock-in animal production, and sheds light on improving gene-targeting efficiencies on pluripotent stem cells.

Suggested Citation

  • Jun Song & Dongshan Yang & Jie Xu & Tianqing Zhu & Y. Eugene Chen & Jifeng Zhang, 2016. "RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10548
    DOI: 10.1038/ncomms10548
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10548
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lukas Möller & Eric J. Aird & Markus S. Schröder & Lena Kobel & Lucas Kissling & Lilly van de Venn & Jacob E. Corn, 2022. "Recursive Editing improves homology-directed repair through retargeting of undesired outcomes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Michael Kosicki & Felicity Allen & Frances Steward & Kärt Tomberg & Yangyang Pan & Allan Bradley, 2022. "Cas9-induced large deletions and small indels are controlled in a convergent fashion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.