Author
Listed:
- Guillaume Gody
(University of Warwick)
- Per B. Zetterlund
(Centre for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales)
- Sébastien Perrier
(University of Warwick
Faculty of Pharmacy and Pharmaceutical Sciences, Monash University)
- Simon Harrisson
(Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, CNRS UMR5623, Université Paul Sabatier Toulouse III)
Abstract
Precise control over the location of monomers in a polymer chain has been described as the ‘Holy Grail’ of polymer synthesis. Controlled chain growth polymerization techniques have brought this goal closer, allowing the preparation of multiblock copolymers with ordered sequences of functional monomers. Such structures have promising applications ranging from medicine to materials engineering. Here we show, however, that the statistical nature of chain growth polymerization places strong limits on the control that can be obtained. We demonstrate that monomer locations are distributed according to surprisingly simple laws related to the Poisson or beta distributions. The degree of control is quantified in terms of the yield of the desired structure and the standard deviation of the appropriate distribution, allowing comparison between different synthetic techniques. This analysis establishes experimental requirements for the design of polymeric chains with controlled sequence of functionalities, which balance precise control of structure with simplicity of synthesis.
Suggested Citation
Guillaume Gody & Per B. Zetterlund & Sébastien Perrier & Simon Harrisson, 2016.
"The limits of precision monomer placement in chain growth polymerization,"
Nature Communications, Nature, vol. 7(1), pages 1-8, April.
Handle:
RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10514
DOI: 10.1038/ncomms10514
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10514. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.