IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10414.html
   My bibliography  Save this article

Hierarchy of bond stiffnesses within icosahedral-based gold clusters protected by thiolates

Author

Listed:
  • Seiji Yamazoe

    (School of Science, The University of Tokyo
    Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura)

  • Shinjiro Takano

    (School of Science, The University of Tokyo)

  • Wataru Kurashige

    (Faculty of Science, Tokyo University of Science)

  • Toshihiko Yokoyama

    (Institute for Molecular Science, Myodaiji)

  • Kiyofumi Nitta

    (Japan Synchrotron Radiation Research Institute)

  • Yuichi Negishi

    (Faculty of Science, Tokyo University of Science)

  • Tatsuya Tsukuda

    (School of Science, The University of Tokyo
    Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura)

Abstract

Unique thermal properties of metal clusters are believed to originate from the hierarchy of the bonding. However, an atomic-level understanding of how the bond stiffnesses are affected by the atomic packing of a metal cluster and the interfacial structure with the surrounding environment has not been attained to date. Here we elucidate the hierarchy in the bond stiffness in thiolate-protected, icosahedral-based gold clusters Au25(SC2H4Ph)18, Au38(SC2H4Ph)24 and Au144(SC2H4Ph)60 by analysing Au L3-edge extended X-ray absorption fine structure data. The Au–Au bonds have different stiffnesses depending on their lengths. The long Au–Au bonds, which are more flexible than those in the bulk metal, are located at the icosahedral-based gold core surface. The short Au–Au bonds, which are stiffer than those in the bulk metal, are mainly distributed along the radial direction and form a cyclic structural backbone with the rigid Au–SR oligomers.

Suggested Citation

  • Seiji Yamazoe & Shinjiro Takano & Wataru Kurashige & Toshihiko Yokoyama & Kiyofumi Nitta & Yuichi Negishi & Tatsuya Tsukuda, 2016. "Hierarchy of bond stiffnesses within icosahedral-based gold clusters protected by thiolates," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10414
    DOI: 10.1038/ncomms10414
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10414
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10414?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kenshi Matsumoto & Ryota Sato & Yasutomi Tatetsu & Ryo Takahata & Seiji Yamazoe & Miho Yamauchi & Yuji Inagaki & Yoichi Horibe & Masaki Kudo & Takaaki Toriyama & Mitsunari Auchi & Mitsutaka Haruta & H, 2022. "Inter-element miscibility driven stabilization of ordered pseudo-binary alloy," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Li-Juan Liu & Fahri Alkan & Shengli Zhuang & Dongyi Liu & Tehseen Nawaz & Jun Guo & Xiaozhou Luo & Jian He, 2023. "Atomically precise gold nanoclusters at the molecular-to-metallic transition with intrinsic chirality from surface layers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Ji Soo Kim & Hogeun Chang & Sungsu Kang & Seungwoo Cha & Hanguk Cho & Seung Jae Kwak & Namjun Park & Younhwa Kim & Dohun Kang & Chyan Kyung Song & Jimin Kwag & Ji-Sook Hahn & Won Bo Lee & Taeghwan Hye, 2023. "Critical roles of metal–ligand complexes in the controlled synthesis of various metal nanoclusters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.