IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10368.html
   My bibliography  Save this article

A Drosophila RNAi library modulates Hippo pathway-dependent tissue growth

Author

Listed:
  • Joseph H.A. Vissers

    (Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre
    University of Melbourne)

  • Samuel A. Manning

    (Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre
    University of Melbourne)

  • Aishwarya Kulkarni

    (Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre)

  • Kieran F. Harvey

    (Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre
    University of Melbourne
    University of Melbourne)

Abstract

Libraries of transgenic Drosophila melanogaster carrying RNA interference (RNAi) constructs have been used extensively to perform large-scale functional genetic screens in vivo. For example, RNAi screens have facilitated the discovery of multiple components of the Hippo pathway, an evolutionarily conserved growth-regulatory network. Here we investigate an important technical limitation with the widely used VDRC KK RNAi collection. We find that approximately 25% of VDRC KK RNAi lines cause false-positive enhancement of the Hippo pathway, owing to ectopic expression of the Tiptop transcription factor. Of relevance to the broader Drosophila community, ectopic tiptop (tio) expression can also cause organ malformations and mask phenotypes such as organ overgrowth. To enhance the use of the VDRC KK RNAi library, we have generated a D. melanogaster strain that will allow researchers to test, in a single cross, whether their genetic screen of interest will be affected by ectopic tio expression.

Suggested Citation

  • Joseph H.A. Vissers & Samuel A. Manning & Aishwarya Kulkarni & Kieran F. Harvey, 2016. "A Drosophila RNAi library modulates Hippo pathway-dependent tissue growth," Nature Communications, Nature, vol. 7(1), pages 1-6, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10368
    DOI: 10.1038/ncomms10368
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10368
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10368?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kenneth A. Wilson & Sudipta Bar & Eric B. Dammer & Enrique M. Carrera & Brian A. Hodge & Tyler A. U. Hilsabeck & Joanna Bons & George W. Brownridge & Jennifer N. Beck & Jacob Rose & Melia Granath-Pane, 2024. "OXR1 maintains the retromer to delay brain aging under dietary restriction," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.