IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10338.html
   My bibliography  Save this article

The Atg1–kinase complex tethers Atg9-vesicles to initiate autophagy

Author

Listed:
  • Yijian Rao

    (Molecular Membrane and Organelle Biology, Max Planck Institute of Biochemistry)

  • Marco G. Perna

    (Molecular Membrane and Organelle Biology, Max Planck Institute of Biochemistry)

  • Benjamin Hofmann

    (Molecular Membrane and Organelle Biology, Max Planck Institute of Biochemistry)

  • Viola Beier

    (Molecular Membrane and Organelle Biology, Max Planck Institute of Biochemistry)

  • Thomas Wollert

    (Molecular Membrane and Organelle Biology, Max Planck Institute of Biochemistry)

Abstract

Autophagosomes are double-membrane vesicles that sequester cytoplasmic material for lysosomal degradation. Their biogenesis is initiated by recruitment of Atg9-vesicles to the phagophore assembly site. This process depends on the regulated activation of the Atg1–kinase complex. However, the underlying molecular mechanism remains unclear. Here we reconstitute this early step in autophagy from purified components in vitro. We find that on assembly from its cytoplasmic subcomplexes, the Atg1–kinase complex becomes activated, enabling it to recruit and tether Atg9-vesicles. The scaffolding protein Atg17 targets the Atg1–kinase complex to autophagic membranes by specifically recognizing the membrane protein Atg9. This interaction is inhibited by the two regulatory subunits Atg31 and Atg29. Engagement of the Atg1–Atg13 subcomplex restores the Atg9-binding and membrane-tethering activity of Atg17. Our data help to unravel the mechanism that controls Atg17-mediated tethering of Atg9-vesicles, providing the molecular basis to understand initiation of autophagosome-biogenesis.

Suggested Citation

  • Yijian Rao & Marco G. Perna & Benjamin Hofmann & Viola Beier & Thomas Wollert, 2016. "The Atg1–kinase complex tethers Atg9-vesicles to initiate autophagy," Nature Communications, Nature, vol. 7(1), pages 1-13, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10338
    DOI: 10.1038/ncomms10338
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10338
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10338?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keisuke Tabata & Kenta Imai & Koki Fukuda & Kentaro Yamamoto & Hayato Kunugi & Toshiharu Fujita & Tatsuya Kaminishi & Christian Tischer & Beate Neumann & Sabine Reither & Fatima Verissimo & Rainer Pep, 2024. "Palmitoylation of ULK1 by ZDHHC13 plays a crucial role in autophagy," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.