Author
Listed:
- Xian Chen
(City University of Hong Kong)
- Limin Jin
(The Hong Kong Polytechnic University)
- Wei Kong
(City University of Hong Kong)
- Tianying Sun
(City University of Hong Kong)
- Wenfei Zhang
(The Hong Kong Polytechnic University)
- Xinhong Liu
(City University of Hong Kong)
- Jun Fan
(City University of Hong Kong
City University of Hong Kong Shenzhen Research Institute)
- Siu Fung Yu
(The Hong Kong Polytechnic University)
- Feng Wang
(City University of Hong Kong
City University of Hong Kong Shenzhen Research Institute)
Abstract
Manipulating particle size is a powerful means of creating unprecedented optical properties in metals and semiconductors. Here we report an insulator system composed of NaYbF4:Tm in which size effect can be harnessed to enhance multiphoton upconversion. Our mechanistic investigations suggest that the phenomenon stems from spatial confinement of energy migration in nanosized structures. We show that confining energy migration constitutes a general and versatile strategy to manipulating multiphoton upconversion, demonstrating an efficient five-photon upconversion emission of Tm3+ in a stoichiometric Yb lattice without suffering from concentration quenching. The high emission intensity is unambiguously substantiated by realizing room-temperature lasing emission at around 311 nm after 980-nm pumping, recording an optical gain two orders of magnitude larger than that of a conventional Yb/Tm-based system operating at 650 nm. Our findings thus highlight the viability of realizing diode-pumped lasing in deep ultraviolet regime for various practical applications.
Suggested Citation
Xian Chen & Limin Jin & Wei Kong & Tianying Sun & Wenfei Zhang & Xinhong Liu & Jun Fan & Siu Fung Yu & Feng Wang, 2016.
"Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing,"
Nature Communications, Nature, vol. 7(1), pages 1-6, April.
Handle:
RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10304
DOI: 10.1038/ncomms10304
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10304. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.