IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9988.html
   My bibliography  Save this article

Magnetic anisotropy in Shiba bound states across a quantum phase transition

Author

Listed:
  • Nino Hatter

    (Fachbereich Physik, Freie Universität Berlin)

  • Benjamin W. Heinrich

    (Fachbereich Physik, Freie Universität Berlin)

  • Michael Ruby

    (Fachbereich Physik, Freie Universität Berlin)

  • Jose I. Pascual

    (Fachbereich Physik, Freie Universität Berlin
    CIC nanoGUNE and Ikerbasque, Basque Foundation for Science)

  • Katharina J. Franke

    (Fachbereich Physik, Freie Universität Berlin)

Abstract

The exchange coupling between magnetic adsorbates and a superconducting substrate leads to Shiba states inside the superconducting energy gap and a Kondo resonance outside the gap. The exchange coupling strength determines whether the quantum many-body ground state is a Kondo singlet or a singlet of the paired superconducting quasiparticles. Here we use scanning tunnelling spectroscopy to identify the different quantum ground states of manganese phthalocyanine on Pb(111). We observe Shiba states, which are split into triplets by magnetocrystalline anisotropy. Their characteristic spectral weight yields an unambiguous proof of the nature of the quantum ground state. Our results provide experimental insights into the phase diagram of a magnetic impurity on a superconducting host and shine light on the effects induced by magnetic anisotropy on many-body interactions.

Suggested Citation

  • Nino Hatter & Benjamin W. Heinrich & Michael Ruby & Jose I. Pascual & Katharina J. Franke, 2015. "Magnetic anisotropy in Shiba bound states across a quantum phase transition," Nature Communications, Nature, vol. 6(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9988
    DOI: 10.1038/ncomms9988
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9988
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9988?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui-Nan Xia & Emi Minamitani & Rok Žitko & Zhen-Yu Liu & Xin Liao & Min Cai & Zi-Heng Ling & Wen-Hao Zhang & Svetlana Klyatskaya & Mario Ruben & Ying-Shuang Fu, 2022. "Spin-orbital Yu-Shiba-Rusinov states in single Kondo molecular magnet," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Yuanji Li & Ruotong Yin & Mingzhe Li & Jiashuo Gong & Ziyuan Chen & Jiakang Zhang & Ya-Jun Yan & Dong-Lai Feng, 2024. "Observation of Yu-Shiba-Rusinov-like states at the edge of CrBr3/NbSe2 heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. M. Uldemolins & A. Mesaros & G. D. Gu & A. Palacio-Morales & M. Aprili & P. Simon & F. Massee, 2024. "Hund’s coupling mediated multi-channel quantum phase transition of a single magnetic impurity in Fe(Se, Te)," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.