IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9943.html
   My bibliography  Save this article

Charge density wave transition in single-layer titanium diselenide

Author

Listed:
  • P Chen

    (University of Illinois at Urbana-Champaign
    Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign
    Advanced Light Source, Lawrence Berkeley National Laboratory)

  • Y. -H. Chan

    (Institute of Atomic and Molecular Sciences)

  • X. -Y. Fang

    (University of Illinois at Urbana-Champaign
    Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign)

  • Y Zhang

    (Advanced Light Source, Lawrence Berkeley National Laboratory
    National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University
    Stanford Institute of Materials and Energy Sciences, SLAC National Accelerator Laboratory)

  • M Y Chou

    (Institute of Atomic and Molecular Sciences
    School of Physics, Georgia Institute of Technology
    National Taiwan University)

  • S. -K. Mo

    (Advanced Light Source, Lawrence Berkeley National Laboratory)

  • Z Hussain

    (Advanced Light Source, Lawrence Berkeley National Laboratory)

  • A. -V. Fedorov

    (Advanced Light Source, Lawrence Berkeley National Laboratory)

  • T. -C. Chiang

    (University of Illinois at Urbana-Champaign
    Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign
    National Taiwan University)

Abstract

A single molecular layer of titanium diselenide (TiSe2) is a promising material for advanced electronics beyond graphene—a strong focus of current research. Such molecular layers are at the quantum limit of device miniaturization and can show enhanced electronic effects not realizable in thick films. We show that single-layer TiSe2 exhibits a charge density wave (CDW) transition at critical temperature TC=232±5 K, which is higher than the bulk TC=200±5 K. Angle-resolved photoemission spectroscopy measurements reveal a small absolute bandgap at room temperature, which grows wider with decreasing temperature T below TC in conjunction with the emergence of (2 × 2) ordering. The results are rationalized in terms of first-principles calculations, symmetry breaking and phonon entropy effects. The observed Bardeen-Cooper-Schrieffer (BCS) behaviour of the gap implies a mean-field CDW order in the single layer and an anisotropic CDW order in the bulk.

Suggested Citation

  • P Chen & Y. -H. Chan & X. -Y. Fang & Y Zhang & M Y Chou & S. -K. Mo & Z Hussain & A. -V. Fedorov & T. -C. Chiang, 2015. "Charge density wave transition in single-layer titanium diselenide," Nature Communications, Nature, vol. 6(1), pages 1-5, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9943
    DOI: 10.1038/ncomms9943
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9943
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Gao & Yang-hao Chan & Yuzhe Wang & Haotian Zhang & Pu Jinxu & Shengtao Cui & Yichen Yang & Zhengtai Liu & Dawei Shen & Zhe Sun & Juan Jiang & Tai C. Chiang & Peng Chen, 2023. "Evidence of high-temperature exciton condensation in a two-dimensional semimetal," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Yuki Nakata & Katsuaki Sugawara & Ashish Chainani & Hirofumi Oka & Changhua Bao & Shaohua Zhou & Pei-Yu Chuang & Cheng-Maw Cheng & Tappei Kawakami & Yasuaki Saruta & Tomoteru Fukumura & Shuyun Zhou & , 2021. "Robust charge-density wave strengthened by electron correlations in monolayer 1T-TaSe2 and 1T-NbSe2," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Yun Cheng & Alfred Zong & Jun Li & Wei Xia & Shaofeng Duan & Wenxuan Zhao & Yidian Li & Fengfeng Qi & Jun Wu & Lingrong Zhao & Pengfei Zhu & Xiao Zou & Tao Jiang & Yanfeng Guo & Lexian Yang & Dong Qia, 2022. "Light-induced dimension crossover dictated by excitonic correlations," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.