IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9925.html
   My bibliography  Save this article

Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing

Author

Listed:
  • Miaofang Chi

    (Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Building 4515)

  • Chao Wang

    (Johns Hopkins University)

  • Yinkai Lei

    (University of Pittsburgh)

  • Guofeng Wang

    (University of Pittsburgh)

  • Dongguo Li

    (Argonne National Laboratory)

  • Karren L. More

    (Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Building 4515)

  • Andrew Lupini

    (Oak Ridge National Laboratory)

  • Lawrence F. Allard

    (Oak Ridge National Laboratory)

  • Nenad M. Markovic

    (Argonne National Laboratory)

  • Vojislav R. Stamenkovic

    (Argonne National Laboratory)

Abstract

The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of catalyst nanoparticles. Here, by tracking the same individual Pt3Co nanoparticles during in situ annealing in a scanning transmission electron microscope, we directly discern five distinct stages of surface elemental rearrangements in Pt3Co nanoparticles at the atomic scale: initial random (alloy) elemental distribution; surface platinum-skin-layer formation; nucleation of structurally ordered domains; ordered framework development and, finally, initiation of amorphization. Furthermore, a comprehensive interplay among phase evolution, surface faceting and elemental inter-diffusion is revealed, and supported by atomistic simulations. This work may pave the way towards designing catalysts through post-synthesis annealing for optimized catalytic performance.

Suggested Citation

  • Miaofang Chi & Chao Wang & Yinkai Lei & Guofeng Wang & Dongguo Li & Karren L. More & Andrew Lupini & Lawrence F. Allard & Nenad M. Markovic & Vojislav R. Stamenkovic, 2015. "Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9925
    DOI: 10.1038/ncomms9925
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9925
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Han & Yanan Zhou & Xiaolin Tai & Geng Wu & Cai Chen & Xun Hong & Lei Tong & Fangfang Xu & Hai-Wei Liang & Yue Lin, 2024. "In-situ atomic tracking of intermetallic compound formation during thermal annealing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.