IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9595.html
   My bibliography  Save this article

Topologically protected surface states in a centrosymmetric superconductor β-PdBi2

Author

Listed:
  • M. Sakano

    (The University of Tokyo)

  • K. Okawa

    (Materials and Structures Laboratory, Tokyo Institute of Technology)

  • M. Kanou

    (Materials and Structures Laboratory, Tokyo Institute of Technology)

  • H. Sanjo

    (The University of Tokyo)

  • T. Okuda

    (Hiroshima Synchrotron Radiation Center, Hiroshima University)

  • T. Sasagawa

    (Materials and Structures Laboratory, Tokyo Institute of Technology)

  • K Ishizaka

    (The University of Tokyo)

Abstract

The topological aspects of electrons in solids can emerge in real materials, as represented by topological insulators. In theory, they show a variety of new magneto-electric phenomena, and especially the ones hosting superconductivity are strongly desired as candidates for topological superconductors. While efforts have been made to develop possible topological superconductors by introducing carriers into topological insulators, those exhibiting indisputable superconductivity free from inhomogeneity are very few. Here we report on the observation of topologically protected surface states in a centrosymmetric layered superconductor, β-PdBi2, by utilizing spin- and angle-resolved photoemission spectroscopy. Besides the bulk bands, several surface bands are clearly observed with symmetrically allowed in-plane spin polarizations, some of which crossing the Fermi level. These surface states are precisely evaluated to be topological, based on the Z2 invariant analysis in analogy to three-dimensional strong topological insulators. β-PdBi2 may offer a solid stage to investigate the topological aspect in the superconducting condensate.

Suggested Citation

  • M. Sakano & K. Okawa & M. Kanou & H. Sanjo & T. Okuda & T. Sasagawa & K Ishizaka, 2015. "Topologically protected surface states in a centrosymmetric superconductor β-PdBi2," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9595
    DOI: 10.1038/ncomms9595
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9595
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoying Xu & Yufan Li & C. L. Chien, 2022. "Anomalous transverse resistance in the topological superconductor β-Bi2Pd," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    2. Lun-Hui Hu & Rui-Xing Zhang, 2024. "Dislocation Majorana bound states in iron-based superconductors," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.