IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9489.html
   My bibliography  Save this article

An LSC epigenetic signature is largely mutation independent and implicates the HOXA cluster in AML pathogenesis

Author

Listed:
  • Namyoung Jung

    (Center for Epigenetics, Johns Hopkins University School of Medicine
    Johns Hopkins University School of Medicine)

  • Bo Dai

    (Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University)

  • Andrew J. Gentles

    (and Center for Cancer Systems Biology, School of Medicine, Stanford University)

  • Ravindra Majeti

    (Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University)

  • Andrew P. Feinberg

    (Center for Epigenetics, Johns Hopkins University School of Medicine
    Johns Hopkins University School of Medicine)

Abstract

Acute myeloid leukaemia (AML) is characterized by subpopulations of leukaemia stem cells (LSCs) that are defined by their ability to engraft in immunodeficient mice. Here we show an LSC DNA methylation signature, derived from xenografts and integration with gene expression that is comprised of 71 genes and identifies a key role for the HOXA cluster. Most of the genes are epigenetically regulated independently of underlying mutations, although several are downstream targets of epigenetic modifier genes mutated in AML. The LSC epigenetic signature is associated with poor prognosis independent of known risk factors such as age and cytogenetics. Analysis of early haematopoietic progenitors from normal individuals reveals two distinct clusters of AML LSC resembling either lymphoid-primed multipotent progenitors or granulocyte/macrophage progenitors. These results provide evidence for DNA methylation variation between AML LSCs and their blast progeny, and identify epigenetically distinct subgroups of AML likely reflecting the cell of origin.

Suggested Citation

  • Namyoung Jung & Bo Dai & Andrew J. Gentles & Ravindra Majeti & Andrew P. Feinberg, 2015. "An LSC epigenetic signature is largely mutation independent and implicates the HOXA cluster in AML pathogenesis," Nature Communications, Nature, vol. 6(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9489
    DOI: 10.1038/ncomms9489
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9489
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9489?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna A Schönherz & Julie Støve Bødker & Alexander Schmitz & Rasmus Froberg Brøndum & Lasse Hjort Jakobsen & Anne Stidsholt Roug & Marianne T Severinsen & Tarec C El-Galaly & Paw Jensen & Hans Erik Joh, 2020. "Normal myeloid progenitor cell subset-associated gene signatures for acute myeloid leukaemia subtyping with prognostic impact," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-21, April.
    2. Lina Liu & Ana Vujovic & Nandan P. Deshpande & Shashank Sathe & Govardhan Anande & He Tian Tony Chen & Joshua Xu & Mark D. Minden & Gene W. Yeo & Ashwin Unnikrishnan & Kristin J. Hope & Yu Lu, 2022. "The splicing factor RBM17 drives leukemic stem cell maintenance by evading nonsense-mediated decay of pro-leukemic factors," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.