IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9474.html
   My bibliography  Save this article

Metal-to-insulator switching in quantum anomalous Hall states

Author

Listed:
  • Xufeng Kou

    (Device Research Laboratory, University of California)

  • Lei Pan

    (Device Research Laboratory, University of California)

  • Jing Wang

    (Stanford University)

  • Yabin Fan

    (Device Research Laboratory, University of California)

  • Eun Sang Choi

    (National High Magnetic Field Laboratory, Florida State University)

  • Wei-Li Lee

    (Institute of Physics, Academia Sinica)

  • Tianxiao Nie

    (Device Research Laboratory, University of California)

  • Koichi Murata

    (Device Research Laboratory, University of California)

  • Qiming Shao

    (Device Research Laboratory, University of California)

  • Shou-Cheng Zhang

    (Stanford University)

  • Kang L. Wang

    (Device Research Laboratory, University of California)

Abstract

After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr0.12Bi0.26Sb0.62)2Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is confirmed through the angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. In addition, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications.

Suggested Citation

  • Xufeng Kou & Lei Pan & Jing Wang & Yabin Fan & Eun Sang Choi & Wei-Li Lee & Tianxiao Nie & Koichi Murata & Qiming Shao & Shou-Cheng Zhang & Kang L. Wang, 2015. "Metal-to-insulator switching in quantum anomalous Hall states," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9474
    DOI: 10.1038/ncomms9474
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9474
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9474?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Deng & Christopher Eckberg & Peng Zhang & Gang Qiu & Eve Emmanouilidou & Gen Yin & Su Kong Chong & Lixuan Tai & Ni Ni & Kang L. Wang, 2022. "Probing the mesoscopic size limit of quantum anomalous Hall insulators," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Deyi Zhuo & Zi-Jie Yan & Zi-Ting Sun & Ling-Jie Zhou & Yi-Fan Zhao & Ruoxi Zhang & Ruobing Mei & Hemian Yi & Ke Wang & Moses H. W. Chan & Chao-Xing Liu & K. T. Law & Cui-Zu Chang, 2023. "Axion insulator state in hundred-nanometer-thick magnetic topological insulator sandwich heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Weiyan Lin & Yang Feng & Yongchao Wang & Jinjiang Zhu & Zichen Lian & Huanyu Zhang & Hao Li & Yang Wu & Chang Liu & Yihua Wang & Jinsong Zhang & Yayu Wang & Chui-Zhen Chen & Xiaodong Zhou & Jian Shen, 2022. "Direct visualization of edge state in even-layer MnBi2Te4 at zero magnetic field," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.