IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9412.html
   My bibliography  Save this article

Adaptive rewiring aggravates the effects of species loss in ecosystems

Author

Listed:
  • David Gilljam

    (Chemistry and Biology, Linköping University)

  • Alva Curtsdotter

    (Chemistry and Biology, Linköping University)

  • Bo Ebenman

    (Chemistry and Biology, Linköping University)

Abstract

Loss of one species in an ecosystem can trigger extinctions of other dependent species. For instance, specialist predators will go extinct following the loss of their only prey unless they can change their diet. It has therefore been suggested that an ability of consumers to rewire to novel prey should mitigate the consequences of species loss by reducing the risk of cascading extinction. Using a new modelling approach on natural and computer-generated food webs we find that, on the contrary, rewiring often aggravates the effects of species loss. This is because rewiring can lead to overexploitation of resources, which eventually causes extinction cascades. Such a scenario is particularly likely if prey species cannot escape predation when rare and if predators are efficient in exploiting novel prey. Indeed, rewiring is a two-edged sword; it might be advantageous for individual predators in the short term, yet harmful for long-term system persistence.

Suggested Citation

  • David Gilljam & Alva Curtsdotter & Bo Ebenman, 2015. "Adaptive rewiring aggravates the effects of species loss in ecosystems," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9412
    DOI: 10.1038/ncomms9412
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9412
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9412?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.