IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9406.html
   My bibliography  Save this article

Sunlight-powered kHz rotation of a hemithioindigo-based molecular motor

Author

Listed:
  • Manuel Guentner

    (Ludwig-Maximilians-Universität München)

  • Monika Schildhauer

    (Ludwig-Maximilians-Universität München)

  • Stefan Thumser

    (Ludwig-Maximilians-Universität München)

  • Peter Mayer

    (Ludwig-Maximilians-Universität München)

  • David Stephenson

    (Ludwig-Maximilians-Universität München)

  • Peter J. Mayer

    (Ludwig-Maximilians-Universität München)

  • Henry Dube

    (Ludwig-Maximilians-Universität München)

Abstract

Photodriven molecular motors are able to convert light energy into directional motion and hold great promise as miniaturized powering units for future nanomachines. In the current state of the art, considerable efforts have still to be made to increase the efficiency of energy transduction and devise systems that allow operation in ambient and non-damaging conditions with high rates of directional motions. The need for ultraviolet light to induce the motion of virtually all available light-driven motors especially hampers the broad applicability of these systems. We describe here a hemithioindigo-based molecular motor, which is powered exclusively by nondestructive visible light (up to 500 nm) and rotates completely directionally with kHz frequency at 20 °C. This is the fastest directional motion of a synthetic system driven by visible light to date permitting materials and biocompatible irradiation conditions to establish similarly high speeds as natural molecular motors.

Suggested Citation

  • Manuel Guentner & Monika Schildhauer & Stefan Thumser & Peter Mayer & David Stephenson & Peter J. Mayer & Henry Dube, 2015. "Sunlight-powered kHz rotation of a hemithioindigo-based molecular motor," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9406
    DOI: 10.1038/ncomms9406
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9406
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Lukas Regen-Pregizer & Ani Ozcelik & Peter Mayer & Frank Hampel & Henry Dube, 2023. "A photochemical method to evidence directional molecular motions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Umberto Raucci & Hayley Weir & Christoph Bannwarth & David M. Sanchez & Todd J. Martínez, 2022. "Chiral photochemistry of achiral molecules," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. L. Pfeifer & S. Crespi & P. Meulen & J. Kemmink & R. M. Scheek & M. F. Hilbers & W. J. Buma & B. L. Feringa, 2022. "Controlling forward and backward rotary molecular motion on demand," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.