IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9396.html
   My bibliography  Save this article

Swarming bacteria migrate by Lévy Walk

Author

Listed:
  • Gil Ariel

    (Bar-Ilan University)

  • Amit Rabani

    (Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev)

  • Sivan Benisty

    (Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev)

  • Jonathan D. Partridge

    (University of Texas at Austin)

  • Rasika M. Harshey

    (University of Texas at Austin)

  • Avraham Be'er

    (Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev)

Abstract

Individual swimming bacteria are known to bias their random trajectories in search of food and to optimize survival. The motion of bacteria within a swarm, wherein they migrate as a collective group over a solid surface, is fundamentally different as typical bacterial swarms show large-scale swirling and streaming motions involving millions to billions of cells. Here by tracking trajectories of fluorescently labelled individuals within such dense swarms, we find that the bacteria are performing super-diffusion, consistent with Lévy walks. Lévy walks are characterized by trajectories that have straight stretches for extended lengths whose variance is infinite. The evidence of super-diffusion consistent with Lévy walks in bacteria suggests that this strategy may have evolved considerably earlier than previously thought.

Suggested Citation

  • Gil Ariel & Amit Rabani & Sivan Benisty & Jonathan D. Partridge & Rasika M. Harshey & Avraham Be'er, 2015. "Swarming bacteria migrate by Lévy Walk," Nature Communications, Nature, vol. 6(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9396
    DOI: 10.1038/ncomms9396
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9396
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9396?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nauta, Johannes & Simoens, Pieter & Khaluf, Yara, 2022. "Group size and resource fractality drive multimodal search strategies: A quantitative analysis on group foraging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    2. Shinohara, Shuji & Okamoto, Hiroshi & Manome, Nobuhito & Gunji, Pegio-Yukio & Nakajima, Yoshihiro & Moriyama, Toru & Chung, Ung-il, 2022. "Simulation of foraging behavior using a decision-making agent with Bayesian and inverse Bayesian inference: Temporal correlations and power laws in displacement patterns," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.