IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9286.html
   My bibliography  Save this article

Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure

Author

Listed:
  • Matthias M. May

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Solar Fuels
    Technische Universität Ilmenau
    Humboldt-Universität zu Berlin)

  • Hans-Joachim Lewerenz

    (California Institute of Technology, Joint Center for Artificial Photosynthesis)

  • David Lackner

    (Fraunhofer Institute for Solar Energy Systems ISE)

  • Frank Dimroth

    (Fraunhofer Institute for Solar Energy Systems ISE)

  • Thomas Hannappel

    (Technische Universität Ilmenau)

Abstract

Photosynthesis is nature’s route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators.

Suggested Citation

  • Matthias M. May & Hans-Joachim Lewerenz & David Lackner & Frank Dimroth & Thomas Hannappel, 2015. "Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9286
    DOI: 10.1038/ncomms9286
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9286
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9286?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucey, Brian & Yahya, Muhammad & Khoja, Layla & Uddin, Gazi Salah & Ahmed, Ali, 2024. "Interconnectedness and risk profile of hydrogen against major asset classes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Yixin Xiao & Xianghua Kong & Srinivas Vanka & Wan Jae Dong & Guosong Zeng & Zhengwei Ye & Kai Sun & Ishtiaque Ahmed Navid & Baowen Zhou & Francesca M. Toma & Hong Guo & Zetian Mi, 2023. "Oxynitrides enabled photoelectrochemical water splitting with over 3,000 hrs stable operation in practical two-electrode configuration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Austin M. K. Fehr & Ayush Agrawal & Faiz Mandani & Christian L. Conrad & Qi Jiang & So Yeon Park & Olivia Alley & Bor Li & Siraj Sidhik & Isaac Metcalf & Christopher Botello & James L. Young & Jacky E, 2023. "Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Saraswat, Sushil Kumar & Rodene, Dylan D. & Gupta, Ram B., 2018. "Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 228-248.
    5. Feng Liang & Roel van de Krol & Fatwa F. Abdi, 2024. "Assessing elevated pressure impact on photoelectrochemical water splitting via multiphysics modeling," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.