IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9181.html
   My bibliography  Save this article

Projected phase-change memory devices

Author

Listed:
  • Wabe W. Koelmans

    (IBM Research—Zurich)

  • Abu Sebastian

    (IBM Research—Zurich)

  • Vara Prasad Jonnalagadda

    (IBM Research—Zurich)

  • Daniel Krebs

    (IBM Research—Zurich)

  • Laurent Dellmann

    (IBM Research—Zurich)

  • Evangelos Eleftheriou

    (IBM Research—Zurich)

Abstract

Nanoscale memory devices, whose resistance depends on the history of the electric signals applied, could become critical building blocks in new computing paradigms, such as brain-inspired computing and memcomputing. However, there are key challenges to overcome, such as the high programming power required, noise and resistance drift. Here, to address these, we present the concept of a projected memory device, whose distinguishing feature is that the physical mechanism of resistance storage is decoupled from the information-retrieval process. We designed and fabricated projected memory devices based on the phase-change storage mechanism and convincingly demonstrate the concept through detailed experimentation, supported by extensive modelling and finite-element simulations. The projected memory devices exhibit remarkably low drift and excellent noise performance. We also demonstrate active control and customization of the programming characteristics of the device that reliably realize a multitude of resistance states.

Suggested Citation

  • Wabe W. Koelmans & Abu Sebastian & Vara Prasad Jonnalagadda & Daniel Krebs & Laurent Dellmann & Evangelos Eleftheriou, 2015. "Projected phase-change memory devices," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9181
    DOI: 10.1038/ncomms9181
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9181
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kiumars Aryana & Yifei Zhang & John A. Tomko & Md Shafkat Bin Hoque & Eric R. Hoglund & David H. Olson & Joyeeta Nag & John C. Read & Carlos Ríos & Juejun Hu & Patrick E. Hopkins, 2021. "Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.