Author
Listed:
- Ola Sabet
(Max Planck Institute of Molecular Physiology)
- Rabea Stockert
(Max Planck Institute of Molecular Physiology)
- Georgia Xouri
(Max Planck Institute of Molecular Physiology)
- Yannick Brüggemann
(Max Planck Institute of Molecular Physiology
Faculty of Chemistry and Chemical Biology)
- Angel Stanoev
(Max Planck Institute of Molecular Physiology)
- Philippe I. H. Bastiaens
(Max Planck Institute of Molecular Physiology
Faculty of Chemistry and Chemical Biology)
Abstract
Autocatalytic phosphorylation of receptor tyrosine kinases (RTKs) enables diverse, context-dependent responses to extracellular signals but comes at the price of autonomous, ligand-independent activation. Using a conformational biosensor that reports on the kinase activity of the cell guidance ephrin receptor type-A (EphA2) in living cells, we observe that autonomous EphA2 activation is suppressed by vesicular recycling and dephosphorylation by protein tyrosine phosphatases 1B (PTP1B) near the pericentriolar recycling endosome. This spatial segregation of catalytically superior PTPs from RTKs at the plasma membrane is essential to preserve ligand responsiveness. Ligand-induced clustering, on the other hand, promotes phosphorylation of a c-Cbl docking site and ubiquitination of the receptor, thereby redirecting it to the late endosome/lysosome. We show that this switch from cyclic to unidirectional receptor trafficking converts a continuous suppressive safeguard mechanism into a transient ligand-responsive signalling mode.
Suggested Citation
Ola Sabet & Rabea Stockert & Georgia Xouri & Yannick Brüggemann & Angel Stanoev & Philippe I. H. Bastiaens, 2015.
"Ubiquitination switches EphA2 vesicular traffic from a continuous safeguard to a finite signalling mode,"
Nature Communications, Nature, vol. 6(1), pages 1-13, November.
Handle:
RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9047
DOI: 10.1038/ncomms9047
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9047. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.