IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9004.html
   My bibliography  Save this article

Sequential substitution of K+ bound to Na+,K+-ATPase visualized by X-ray crystallography

Author

Listed:
  • Haruo Ogawa

    (Institute of Molecular and Cellular Biosciences, The University of Tokyo)

  • Flemming Cornelius

    (Aarhus University)

  • Ayami Hirata

    (Institute of Molecular and Cellular Biosciences, The University of Tokyo)

  • Chikashi Toyoshima

    (Institute of Molecular and Cellular Biosciences, The University of Tokyo)

Abstract

Na+,K+-ATPase transfers three Na+ from the cytoplasm into the extracellular medium and two K+ in the opposite direction per ATP hydrolysed. The binding and release of Na+ and K+ are all thought to occur sequentially. Here we demonstrate by X-ray crystallography of the ATPase in E2·MgF42−·2K+, a state analogous to E2·Pi·2K+, combined with isotopic measurements, that the substitution of the two K+ with congeners in the extracellular medium indeed occurs at different rates, substantially faster at site II. An analysis of thermal movements of protein atoms in the crystal shows that the M3–M4E helix pair opens and closes the ion pathway leading to the extracellular medium, allowing K+ at site II to be substituted first. Taken together, these results indicate that site I K+ is the first cation to bind to the empty cation-binding sites after releasing three Na+.

Suggested Citation

  • Haruo Ogawa & Flemming Cornelius & Ayami Hirata & Chikashi Toyoshima, 2015. "Sequential substitution of K+ bound to Na+,K+-ATPase visualized by X-ray crystallography," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9004
    DOI: 10.1038/ncomms9004
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9004
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hengjun Cui & Andreas U. Müller & Marc Leibundgut & Jiawen Tian & Nenad Ban & Eilika Weber-Ban, 2021. "Structures of prokaryotic ubiquitin-like protein Pup in complex with depupylase Dop reveal the mechanism of catalytic phosphate formation," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.