IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8915.html
   My bibliography  Save this article

Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion

Author

Listed:
  • Martín Caldarola

    (Laboratorio de Electrónica Cuántica, FCEN, Universidad de Buenos Aires)

  • Pablo Albella

    (The Blackett Laboratory, Imperial College London)

  • Emiliano Cortés

    (The Blackett Laboratory, Imperial College London)

  • Mohsen Rahmani

    (The Blackett Laboratory, Imperial College London)

  • Tyler Roschuk

    (The Blackett Laboratory, Imperial College London)

  • Gustavo Grinblat

    (Laboratorio de Electrónica Cuántica, FCEN, Universidad de Buenos Aires)

  • Rupert F. Oulton

    (The Blackett Laboratory, Imperial College London)

  • Andrea V. Bragas

    (Laboratorio de Electrónica Cuántica, FCEN, Universidad de Buenos Aires)

  • Stefan A. Maier

    (The Blackett Laboratory, Imperial College London)

Abstract

Nanoplasmonics has recently revolutionized our ability to control light on the nanoscale. Using metallic nanostructures with tailored shapes, it is possible to efficiently focus light into nanoscale field ‘hot spots’. High field enhancement factors have been achieved in such optical nanoantennas, enabling transformative science in the areas of single molecule interactions, highly enhanced nonlinearities and nanoscale waveguiding. Unfortunately, these large enhancements come at the price of high optical losses due to absorption in the metal, severely limiting real-world applications. Via the realization of a novel nanophotonic platform based on dielectric nanostructures to form efficient nanoantennas with ultra-low light-into-heat conversion, here we demonstrate an approach that overcomes these limitations. We show that dimer-like silicon-based single nanoantennas produce both high surface enhanced fluorescence and surface enhanced Raman scattering, while at the same time generating a negligible temperature increase in their hot spots and surrounding environments.

Suggested Citation

  • Martín Caldarola & Pablo Albella & Emiliano Cortés & Mohsen Rahmani & Tyler Roschuk & Gustavo Grinblat & Rupert F. Oulton & Andrea V. Bragas & Stefan A. Maier, 2015. "Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8915
    DOI: 10.1038/ncomms8915
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8915
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Sortino & Panaiot G. Zotev & Catherine L. Phillips & Alistair J. Brash & Javier Cambiasso & Elena Marensi & A. Mark Fox & Stefan A. Maier & Riccardo Sapienza & Alexander I. Tartakovskii, 2021. "Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Joel Kuttruff & Marco Romanelli & Esteban Pedrueza-Villalmanzo & Jonas Allerbeck & Jacopo Fregoni & Valeria Saavedra-Becerril & Joakim Andréasson & Daniele Brida & Alexandre Dmitriev & Stefano Corni &, 2023. "Sub-picosecond collapse of molecular polaritons to pure molecular transition in plasmonic photoswitch-nanoantennas," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Hong Zhou & Zhihao Ren & Dongxiao Li & Cheng Xu & Xiaojing Mu & Chengkuo Lee, 2023. "Dynamic construction of refractive index-dependent vibrations using surface plasmon-phonon polaritons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.