IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8682.html
   My bibliography  Save this article

Quenching of dynamic nuclear polarization by spin–orbit coupling in GaAs quantum dots

Author

Listed:
  • John M. Nichol

    (Harvard University)

  • Shannon P. Harvey

    (Harvard University)

  • Michael D. Shulman

    (Harvard University)

  • Arijeet Pal

    (Harvard University)

  • Vladimir Umansky

    (Braun Center for Submicron Research, Weizmann Institute of Science)

  • Emmanuel I. Rashba

    (Harvard University)

  • Bertrand I. Halperin

    (Harvard University)

  • Amir Yacoby

    (Harvard University)

Abstract

The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin–orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron–nuclear system, despite weak spin–orbit coupling in GaAs. Using Landau–Zener sweeps to measure static and dynamic properties of the electron spin–flip probability, we observe that the size of the spin–orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin–orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin–orbit coupling in central-spin systems.

Suggested Citation

  • John M. Nichol & Shannon P. Harvey & Michael D. Shulman & Arijeet Pal & Vladimir Umansky & Emmanuel I. Rashba & Bertrand I. Halperin & Amir Yacoby, 2015. "Quenching of dynamic nuclear polarization by spin–orbit coupling in GaAs quantum dots," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8682
    DOI: 10.1038/ncomms8682
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8682
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wonjin Jang & Jehyun Kim & Jaemin Park & Gyeonghun Kim & Min-Kyun Cho & Hyeongyu Jang & Sangwoo Sim & Byoungwoo Kang & Hwanchul Jung & Vladimir Umansky & Dohun Kim, 2023. "Wigner-molecularization-enabled dynamic nuclear polarization," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.