IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8674.html
   My bibliography  Save this article

Identification of Alp1U and Lom6 as epoxy hydrolases and implications for kinamycin and lomaiviticin biosynthesis

Author

Listed:
  • Bin Wang

    (State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences
    College of Life Sciences, University of Chinese Academy of Sciences)

  • Fang Guo

    (State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences
    College of Life Sciences, University of Chinese Academy of Sciences)

  • Jinwei Ren

    (State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences)

  • Guomin Ai

    (State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences)

  • Bertrand Aigle

    (Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128
    INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128)

  • Keqiang Fan

    (State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences)

  • Keqian Yang

    (State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences)

Abstract

The naturally occurring diazobenzofluorenes, kinamycins, fluostatins and lomaiviticins, possess highly oxygenated A-rings, via which the last forms a dimeric pharmacophore. However, neither the A-ring transformation nor the dimerization mechanisms have been explored thus far. Here we propose a unified biosynthetic logic for the three types of antibiotics and verify one key reaction via detailed genetic and enzymatic experiments. Alp1U and Lom6 from the kinamycin and lomaiviticin biosynthesis, respectively, are shown to catalyse epoxy hydrolysis on a substrate that is obtained by chemical deacetylation of a kinamycin-pathway-derived intermediate. Thus, our study provides the first evidence for the existence of an epoxy intermediate in lomaiviticin biosynthesis. Furthermore, our results suggest that the dimerization in the lomaiviticin biosynthesis proceeds after dehydration of a product generated by Lom6.

Suggested Citation

  • Bin Wang & Fang Guo & Jinwei Ren & Guomin Ai & Bertrand Aigle & Keqiang Fan & Keqian Yang, 2015. "Identification of Alp1U and Lom6 as epoxy hydrolases and implications for kinamycin and lomaiviticin biosynthesis," Nature Communications, Nature, vol. 6(1), pages 1-5, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8674
    DOI: 10.1038/ncomms8674
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8674
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunfang Yang & Liping Zhang & Wenjun Zhang & Chunshuai Huang & Yiguang Zhu & Xiaodong Jiang & Wei Liu & Mengran Zhao & Bidhan Chandra De & Changsheng Zhang, 2022. "Biochemical and structural insights of multifunctional flavin-dependent monooxygenase FlsO1-catalyzed unexpected xanthone formation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Yuchun Zhao & Xiangyang Liu & Zhihong Xiao & Jie Zhou & Xingyu Song & Xiaozheng Wang & Lijun Hu & Ying Wang & Peng Sun & Wenning Wang & Xinyi He & Shuangjun Lin & Zixin Deng & Lifeng Pan & Ming Jiang, 2023. "O-methyltransferase-like enzyme catalyzed diazo installation in polyketide biosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Bidhan Chandra De & Wenjun Zhang & Chunfang Yang & Attila Mándi & Chunshuai Huang & Liping Zhang & Wei Liu & Mark W. Ruszczycky & Yiguang Zhu & Ming Ma & Ghader Bashiri & Tibor Kurtán & Hung-wen Liu &, 2022. "Flavin-enabled reductive and oxidative epoxide ring opening reactions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.