IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8669.html
   My bibliography  Save this article

The minimal work cost of information processing

Author

Listed:
  • Philippe Faist

    (Institute for Theoretical Physics, ETH Zurich)

  • Frédéric Dupuis

    (Institute for Theoretical Physics, ETH Zurich
    Aarhus University
    Faculty of Informatics, Masaryk University)

  • Jonathan Oppenheim

    (University College of London)

  • Renato Renner

    (Institute for Theoretical Physics, ETH Zurich)

Abstract

Irreversible information processing cannot be carried out without some inevitable thermodynamical work cost. This fundamental restriction, known as Landauer’s principle, is increasingly relevant today, as the energy dissipation of computing devices impedes the development of their performance. Here we determine the minimal work required to carry out any logical process, for instance a computation. It is given by the entropy of the discarded information conditional to the output of the computation. Our formula takes precisely into account the statistically fluctuating work requirement of the logical process. It enables the explicit calculation of practical scenarios, such as computational circuits or quantum measurements. On the conceptual level, our result gives a precise and operational connection between thermodynamic and information entropy, and explains the emergence of the entropy state function in macroscopic thermodynamics.

Suggested Citation

  • Philippe Faist & Frédéric Dupuis & Jonathan Oppenheim & Renato Renner, 2015. "The minimal work cost of information processing," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8669
    DOI: 10.1038/ncomms8669
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8669
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Herrmann-Pillath, Carsten, 2018. "The Case for a New Discipline: Technosphere Science," Ecological Economics, Elsevier, vol. 149(C), pages 212-225.
    2. Giulio Chiribella & Fei Meng & Renato Renner & Man-Hong Yung, 2022. "The nonequilibrium cost of accurate information processing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.