IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8646.html
   My bibliography  Save this article

Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-Å resolution

Author

Listed:
  • Nick Quade

    (Institute of Molecular Biology and Biophysics)

  • Daniel Boehringer

    (Institute of Molecular Biology and Biophysics)

  • Marc Leibundgut

    (Institute of Molecular Biology and Biophysics)

  • Joop van den Heuvel

    (Research Group Recombinant Protein Expression, Helmholtz Centre for Infection Research)

  • Nenad Ban

    (Institute of Molecular Biology and Biophysics)

Abstract

Hepatitis C virus (HCV), a widespread human pathogen, is dependent on a highly structured 5′-untranslated region of its mRNA, referred to as internal ribosome entry site (IRES), for the translation of all of its proteins. The HCV IRES initiates translation by directly binding to the small ribosomal subunit (40S), circumventing the need for many eukaryotic translation initiation factors required for mRNA scanning. Here we present the cryo-EM structure of the human 40S ribosomal subunit in complex with the HCV IRES at 3.9 Å resolution, determined by focused refinement of an 80S ribosome–HCV IRES complex. The structure reveals the molecular details of the interactions between the IRES and the 40S, showing that expansion segment 7 (ES7) of the 18S rRNA acts as a central anchor point for the HCV IRES. The structural data rationalizes previous biochemical and genetic evidence regarding the initiation mechanism of the HCV and other related IRESs.

Suggested Citation

  • Nick Quade & Daniel Boehringer & Marc Leibundgut & Joop van den Heuvel & Nenad Ban, 2015. "Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-Å resolution," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8646
    DOI: 10.1038/ncomms8646
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8646
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8646?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georg Dorn & Christoph Gmeiner & Tebbe Vries & Emil Dedic & Mihajlo Novakovic & Fred F. Damberger & Christophe Maris & Esteban Finol & Chris P. Sarnowski & Joachim Kohlbrecher & Timothy J. Welsh & Sre, 2023. "Integrative solution structure of PTBP1-IRES complex reveals strong compaction and ordering with residual conformational flexibility," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Shivali Patel & Alec N. Sexton & Madison S. Strine & Craig B. Wilen & Matthew D. Simon & Anna Marie Pyle, 2023. "Systematic detection of tertiary structural modules in large RNAs and RNP interfaces by Tb-seq," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.