IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8524.html
   My bibliography  Save this article

A plastic relationship between vinculin-mediated tension and adhesion complex area defines adhesion size and lifetime

Author

Listed:
  • Pablo Hernández-Varas

    (Karolinska Institutet)

  • Ulrich Berge

    (Karolinska Institutet)

  • John G. Lock

    (Karolinska Institutet)

  • Staffan Strömblad

    (Karolinska Institutet)

Abstract

Cell-matrix adhesions are central mediators of mechanotransduction, yet the interplay between force and adhesion regulation remains unclear. Here we use live cell imaging to map time-dependent cross-correlations between vinculin-mediated tension and adhesion complex area, revealing a plastic, context-dependent relationship. Interestingly, while an expected positive cross-correlation dominated in mid-sized adhesions, small and large adhesions display negative cross-correlation. Furthermore, although large changes in adhesion complex area follow vinculin-mediated tension alterations, small increases in area precede vinculin-mediated tension dynamics. Modelling based on this mapping of the vinculin-mediated tension-adhesion complex area relationship confirms its biological validity, and indicates that this relationship explains adhesion size and lifetime limits, keeping adhesions focal and transient. We also identify a subpopulation of steady-state adhesions whose size and vinculin-mediated tension become stabilized, and whose disassembly may be selectively microtubule-mediated. In conclusion, we define a plastic relationship between vinculin-mediated tension and adhesion complex area that controls fundamental cell-matrix adhesion properties.

Suggested Citation

  • Pablo Hernández-Varas & Ulrich Berge & John G. Lock & Staffan Strömblad, 2015. "A plastic relationship between vinculin-mediated tension and adhesion complex area defines adhesion size and lifetime," Nature Communications, Nature, vol. 6(1), pages 1-13, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8524
    DOI: 10.1038/ncomms8524
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8524
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacob M Kowalewski & Hamdah Shafqat-Abbasi & Mehrdad Jafari-Mamaghani & Bereket Endrias Ganebo & Xiaowei Gong & Staffan Strömblad & John G Lock, 2015. "Disentangling Membrane Dynamics and Cell Migration; Differential Influences of F-actin and Cell-Matrix Adhesions," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-23, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.