IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8448.html
   My bibliography  Save this article

Arbitrary lattice symmetries via block copolymer nanomeshes

Author

Listed:
  • Pawel W. Majewski

    (Center for Functional Nanomaterials, Brookhaven National Laboratory)

  • Atikur Rahman

    (Center for Functional Nanomaterials, Brookhaven National Laboratory)

  • Charles T. Black

    (Center for Functional Nanomaterials, Brookhaven National Laboratory)

  • Kevin G. Yager

    (Center for Functional Nanomaterials, Brookhaven National Laboratory)

Abstract

Self-assembly of block copolymers is a powerful motif for spontaneously forming well-defined nanostructures over macroscopic areas. Yet, the inherent energy minimization criteria of self-assembly give rise to a limited library of structures; diblock copolymers naturally form spheres on a cubic lattice, hexagonally packed cylinders and alternating lamellae. Here, we demonstrate multicomponent nanomeshes with any desired lattice symmetry. We exploit photothermal annealing to rapidly order and align block copolymer phases over macroscopic areas, combined with conversion of the self-assembled organic phase into inorganic replicas. Repeated photothermal processing independently aligns successive layers, providing full control of the size, symmetry and composition of the nanoscale unit cell. We construct a variety of symmetries, most of which are not natively formed by block copolymers, including squares, rhombuses, rectangles and triangles. In fact, we demonstrate all possible two-dimensional Bravais lattices. Finally, we elucidate the influence of nanostructure on the electrical and optical properties of nanomeshes.

Suggested Citation

  • Pawel W. Majewski & Atikur Rahman & Charles T. Black & Kevin G. Yager, 2015. "Arbitrary lattice symmetries via block copolymer nanomeshes," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8448
    DOI: 10.1038/ncomms8448
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8448
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junghyun Cho & Jinwoo Oh & Joona Bang & Jai Hyun Koh & Hoon Yeub Jeong & Seungjun Chung & Jeong Gon Son, 2023. "Roll-to-plate 0.1-second shear-rolling process at elevated temperature for highly aligned nanopatterns," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Sebastian T. Russell & Suwon Bae & Ashwanth Subramanian & Nikhil Tiwale & Gregory Doerk & Chang-Yong Nam & Masafumi Fukuto & Kevin G. Yager, 2022. "Priming self-assembly pathways by stacking block copolymers," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.