IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8436.html
   My bibliography  Save this article

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth

Author

Listed:
  • Weiyang Li

    (Stanford University)

  • Hongbin Yao

    (Stanford University)

  • Kai Yan

    (Stanford University)

  • Guangyuan Zheng

    (Stanford University)

  • Zheng Liang

    (Stanford University)

  • Yet-Ming Chiang

    (Massachusetts Institute of Technology)

  • Yi Cui

    (Stanford University
    Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory)

Abstract

Lithium metal has shown great promise as an anode material for high-energy storage systems, owing to its high theoretical specific capacity and low negative electrochemical potential. Unfortunately, uncontrolled dendritic and mossy lithium growth, as well as electrolyte decomposition inherent in lithium metal-based batteries, cause safety issues and low Coulombic efficiency. Here we demonstrate that the growth of lithium dendrites can be suppressed by exploiting the reaction between lithium and lithium polysulfide, which has long been considered as a critical flaw in lithium–sulfur batteries. We show that a stable and uniform solid electrolyte interphase layer is formed due to a synergetic effect of both lithium polysulfide and lithium nitrate as additives in ether-based electrolyte, preventing dendrite growth and minimizing electrolyte decomposition. Our findings allow for re-evaluation of the reactions regarding lithium polysulfide, lithium nitrate and lithium metal, and provide insights into solving the problems associated with lithium metal anodes.

Suggested Citation

  • Weiyang Li & Hongbin Yao & Kai Yan & Guangyuan Zheng & Zheng Liang & Yet-Ming Chiang & Yi Cui, 2015. "The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8436
    DOI: 10.1038/ncomms8436
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8436
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8436?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuruo Qi & Qing-Jie Li & Yuanke Wu & Shu-juan Bao & Changming Li & Yuming Chen & Guoxiu Wang & Maowen Xu, 2021. "A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Salimeh Gohari & Vaclav Knap & Mohammad Reza Yaftian, 2021. "Investigation on Cycling and Calendar Aging Processes of 3.4 Ah Lithium-Sulfur Pouch Cells," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    3. Miao Bai & Xiaoyu Tang & Min Zhang & Helin Wang & Zhiqiao Wang & Ahu Shao & Yue Ma, 2024. "An in-situ polymerization strategy for gel polymer electrolyte Si||Ni-rich lithium-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Li, Yong & Yang, Jie & Song, Jian, 2017. "Efficient storage mechanisms and heterogeneous structures for building better next-generation lithium rechargeable batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1503-1512.
    5. Mejia, Cristian & Kajikawa, Yuya, 2020. "Emerging topics in energy storage based on a large-scale analysis of academic articles and patents," Applied Energy, Elsevier, vol. 263(C).
    6. Sang Cheol Kim & Xin Gao & Sheng-Lun Liao & Hance Su & Yuelang Chen & Wenbo Zhang & Louisa C. Greenburg & Jou-An Pan & Xueli Zheng & Yusheng Ye & Mun Sek Kim & Philaphon Sayavong & Aaron Brest & Jian , 2024. "Solvation-property relationship of lithium-sulphur battery electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Li, Yong & Yang, Jie & Song, Jian, 2017. "Design structure model and renewable energy technology for rechargeable battery towards greener and more sustainable electric vehicle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 19-25.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.