IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8429.html
   My bibliography  Save this article

Photogated humidity-driven motility

Author

Listed:
  • Lidong Zhang

    (New York University Abu Dhabi)

  • Haoran Liang

    (New York University Abu Dhabi)

  • Jolly Jacob

    (Abu Dhabi University)

  • Panče Naumov

    (New York University Abu Dhabi)

Abstract

Hygroinduced motion is a fundamental process of energy conversion that is essential for applications that require contactless actuation in response to the day–night rhythm of atmospheric humidity. Here we demonstrate that mechanical bistability caused by rapid and anisotropic adsorption and desorption of water vapour by a flexible dynamic element that harnesses the chemical potential across very small humidity gradients for perpetual motion can be effectively modulated with light. A mechanically robust material capable of rapid exchange of water with the surroundings is prepared that undergoes swift locomotion in effect to periodic shape reconfiguration with turnover frequency of

Suggested Citation

  • Lidong Zhang & Haoran Liang & Jolly Jacob & Panče Naumov, 2015. "Photogated humidity-driven motility," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8429
    DOI: 10.1038/ncomms8429
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8429
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ariel Ma & Jian Yu & William Uspal, 2021. "Generating Electricity from Natural Evaporation Using PVDF Thin Films Incorporating Nanocomposite Materials," Energies, MDPI, vol. 14(3), pages 1-14, January.
    2. Kexin Guo & Xuehan Yang & Chao Zhou & Chuang Li, 2024. "Self-regulated reversal deformation and locomotion of structurally homogenous hydrogels subjected to constant light illumination," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.