IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8371.html
   My bibliography  Save this article

Ultralow noise miniature external cavity semiconductor laser

Author

Listed:
  • W. Liang

    (OEwaves Inc.)

  • V. S. Ilchenko

    (OEwaves Inc.)

  • D. Eliyahu

    (OEwaves Inc.)

  • A. A. Savchenkov

    (OEwaves Inc.)

  • A. B. Matsko

    (OEwaves Inc.)

  • D. Seidel

    (OEwaves Inc.)

  • L. Maleki

    (OEwaves Inc.)

Abstract

Advanced applications in optical metrology demand improved lasers with high spectral purity, in form factors that are small and insensitive to environmental perturbations. While laboratory-scale lasers with extraordinarily high stability and low noise have been reported, all-integrated chip-scale devices with sub-100 Hz linewidth have not been previously demonstrated. Lasers integrated with optical microresonators as external cavities have the potential for substantial reduction of noise. However, stability and spectral purity improvements of these lasers have only been validated with rack-mounted support equipment, assembled with fibre lasers to marginally improve their noise performance. In this work we report on a realization of a heterogeneously integrated, chip-scale semiconductor laser featuring 30-Hz integral linewidth as well as sub-Hz instantaneous linewidth.

Suggested Citation

  • W. Liang & V. S. Ilchenko & D. Eliyahu & A. A. Savchenkov & A. B. Matsko & D. Seidel & L. Maleki, 2015. "Ultralow noise miniature external cavity semiconductor laser," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8371
    DOI: 10.1038/ncomms8371
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8371
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8371?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grigory Lihachev & Johann Riemensberger & Wenle Weng & Junqiu Liu & Hao Tian & Anat Siddharth & Viacheslav Snigirev & Vladimir Shadymov & Andrey Voloshin & Rui Ning Wang & Jijun He & Sunil A. Bhave & , 2022. "Low-noise frequency-agile photonic integrated lasers for coherent ranging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Mohamad Hossein Idjadi & Kwangwoong Kim & Nicolas K. Fontaine, 2024. "Modulation-free laser stabilization technique using integrated cavity-coupled Mach-Zehnder interferometer," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Hossein Taheri & Andrey B. Matsko & Lute Maleki & Krzysztof Sacha, 2022. "All-optical dissipative discrete time crystals," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.