IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8309.html
   My bibliography  Save this article

Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids

Author

Listed:
  • Li Yang

    (Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, The Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University
    Cellular and Developmental Biology, Yale University)

  • Bosheng Li

    (Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, The Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University
    Cellular and Developmental Biology, Yale University)

  • Xiao-yu Zheng

    (Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Duke University)

  • Jigang Li

    (State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University)

  • Mei Yang

    (Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, The Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University)

  • Xinnian Dong

    (Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Duke University)

  • Guangming He

    (Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, The Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University)

  • Chengcai An

    (Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, The Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University)

  • Xing Wang Deng

    (Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, The Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University
    Cellular and Developmental Biology, Yale University)

Abstract

Heterosis, the phenotypic superiority of a hybrid over its parents, has been demonstrated for many traits in Arabidopsis thaliana, but its effect on defence remains largely unexplored. Here, we show that hybrids between some A. thaliana accessions show increased resistance to the biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Comparisons of transcriptomes between these hybrids and their parents after inoculation reveal that several key salicylic acid (SA) biosynthesis genes are significantly upregulated in hybrids. Moreover, SA levels are higher in hybrids than in either parent. Increased resistance to Pst DC3000 is significantly compromised in hybrids of pad4 mutants in which the SA biosynthesis pathway is blocked. Finally, increased histone H3 acetylation of key SA biosynthesis genes correlates with their upregulation in infected hybrids. Our data demonstrate that enhanced activation of SA biosynthesis in A. thaliana hybrids may contribute to their increased resistance to a biotrophic bacterial pathogen.

Suggested Citation

  • Li Yang & Bosheng Li & Xiao-yu Zheng & Jigang Li & Mei Yang & Xinnian Dong & Guangming He & Chengcai An & Xing Wang Deng, 2015. "Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8309
    DOI: 10.1038/ncomms8309
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8309
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8309?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.