IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8252.html
   My bibliography  Save this article

Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry

Author

Listed:
  • Eric Yue Ma

    (Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, California 94305, USA
    Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA)

  • M. Reyes Calvo

    (Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, California 94305, USA
    Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA)

  • Jing Wang

    (Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, California 94305, USA
    Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, USA)

  • Biao Lian

    (Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, California 94305, USA
    Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, USA)

  • Mathias Mühlbauer

    (Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, California 94305, USA
    Physikalisches Institut (EP3), Universität Würzburg)

  • Christoph Brüne

    (Physikalisches Institut (EP3), Universität Würzburg)

  • Yong-Tao Cui

    (Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, California 94305, USA)

  • Keji Lai

    (Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, California 94305, USA
    Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
    University of Texas at Austin)

  • Worasom Kundhikanjana

    (Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, California 94305, USA
    Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA)

  • Yongliang Yang

    (Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, California 94305, USA)

  • Matthias Baenninger

    (Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, California 94305, USA
    Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, USA)

  • Markus König

    (Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, California 94305, USA
    Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, USA)

  • Christopher Ames

    (Physikalisches Institut (EP3), Universität Würzburg)

  • Hartmut Buhmann

    (Physikalisches Institut (EP3), Universität Würzburg)

  • Philipp Leubner

    (Physikalisches Institut (EP3), Universität Würzburg)

  • Laurens W. Molenkamp

    (Physikalisches Institut (EP3), Universität Würzburg)

  • Shou-Cheng Zhang

    (Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, California 94305, USA
    Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, USA)

  • David Goldhaber-Gordon

    (Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, California 94305, USA
    Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, USA)

  • Michael A. Kelly

    (Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, California 94305, USA)

  • Zhi-Xun Shen

    (Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, California 94305, USA
    Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
    Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, USA)

Abstract

The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy, and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. This indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.

Suggested Citation

  • Eric Yue Ma & M. Reyes Calvo & Jing Wang & Biao Lian & Mathias Mühlbauer & Christoph Brüne & Yong-Tao Cui & Keji Lai & Worasom Kundhikanjana & Yongliang Yang & Matthias Baenninger & Markus König & Chr, 2015. "Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8252
    DOI: 10.1038/ncomms8252
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8252
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8252?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiyan Lin & Yang Feng & Yongchao Wang & Jinjiang Zhu & Zichen Lian & Huanyu Zhang & Hao Li & Yang Wu & Chang Liu & Yihua Wang & Jinsong Zhang & Yayu Wang & Chui-Zhen Chen & Xiaodong Zhou & Jian Shen, 2022. "Direct visualization of edge state in even-layer MnBi2Te4 at zero magnetic field," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Saquib Shamim & Pragya Shekhar & Wouter Beugeling & Jan Böttcher & Andreas Budewitz & Julian-Benedikt Mayer & Lukas Lunczer & Ewelina M. Hankiewicz & Hartmut Buhmann & Laurens W. Molenkamp, 2022. "Counterpropagating topological and quantum Hall edge channels," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.